Limits on Low-Mass WIMP with p-PCGe

TEXONO@KSNL New Results [arXiv: 1303.0925]

Limits on spin-independent couplings of WIMP dark matter with a p-type point-contact germanium detector

H.B. Li, H.Y. Liao,¹ S.T. Lin,^{1,2} S.K. Liu,³ L. Singh,^{1,4} M.K. Singh,^{1,4} A.K. Soma,^{1,4} H.T. Wong,^{1,*} Y.C. Wu,⁵ W. Zhao,⁵ G. Asryan,¹ Y.C. Chuang,¹ M. Deniz,² J.M. Fang,⁶ C.L. Hsu,¹ T.R. Huang,¹ G. Kiran Kumar,¹ S.C. Lee,¹ J. Li,⁵ J.M. Li,⁵ Y.J. Li,⁵ Y.L. Li,⁵ C.W. Lin,¹ F.K. Lin,¹ Y.F. Liu,^{1,7} H. Ma,⁵ X.C. Ruan,⁸ Y.T. Shen,¹ V. Singh,⁴ C.J. Tang,³ C.H. Tseng,¹ Y. Xu,^{1,7} S.W. Yang,¹ C.X. Yu,^{1,7} Q. Yue,⁵ Z. Zeng,⁵ M. Zeyrek,⁹ and Z.Y. Zhou⁸ (TEXONO Collaboration)

 ¹ Institute of Physics, Academia Sinica, Taipei 11529, Taiwan.
 ² Department of Physics, Dokuz Eylül University, Buca, İzmir 35160, Turkey.
 ³ Department of Physics, Sichuan University, Chengdu 610065, China.
 ⁴ Department of Physics, Banaras Hindu University, Varanasi 221005, India.
 ⁵ Department of Engineering Physics, Tsinghua University, Beijing 100084, China.
 ⁶ Kuo-Sheng Nuclear Power Station, Taiwan Power Company, Kuo-Sheng 207, Taiwan.
 ⁷ Department of Physics, Institute of Atomic Energy, Beijing 102413, China.
 ⁸ Department of Physics, Middle East Technical University, Ankara 06531, Turkey. (Dated: March 4, 2013)

Henry T. Wong /王子敬 Academia Sinica /中央研究院

TEXONO@KSNL New Results [arXiv:1303.0925]

Configurations:

- ***** 39.5 kg-days of data @ KSNL
- ***** Baseline design with NaI(TI) AC & active CR vetos
- *** PPCGe , 840 g fiducial mass**
- ***** Analysis above electronic noise edge of 500-eV

Basic (Previously Used) Selection Criteria:

- \gg Physics Vs Electronics Noise (PN) :
 - pedestal tails, microphonics, preamp-reset induced
 - Via pulse shape analysis & timing
 - WIMP-eff ~ survival of doubly-tagged ACT+CRT events
- **Anti-Compton vetos (ACV) :** Nal(Tl) anti-coincidence
 - WIMP-eff ~ survival of random trigger (RT) events
- **Cosmic-Ray vetos (CRV) :**
 - WIMP-eff ~ survival of RT
 - CR-rejection eff : survival of reference samples with NaI(TI)>20 MeV

PSD for Surface Vs Bulk Events @ PCGe

n+ "inactive layer" is not totally dead; signals finite but slower rise time ACV+CRT events (neutron rich) samples do not show surface band Understand/Measure Efficiencies and Suppression Factors ?

Bulk Vs Surface (BS) Events Selection & Efficiencies

"Calibration" = measure energy-dependent signal-retaining (ε_{BS}) & background-suppressing (λ_{BS}) efficiencies, such that [B,S=real; B'S'=measured]

$$B' = \epsilon_{\rm BS} \cdot B + (1 - \lambda_{\rm BS}) \cdot S$$
$$S' = (1 - \epsilon_{\rm BS}) \cdot B + \lambda_{\rm BS} \cdot S$$

Approach: Identify *at least* two calibration data where (B,S) are known & (B',S') measured \bigoplus solve coupled equation for $(\varepsilon_{BS}, \lambda_{BS}) \implies$ correct physics (B'S') to get (B,S)

Three complementary [different depth distributions] calibration data:

- **Very Surface-rich** low-energy γ (²⁴¹Am, 60 keV) ; B=simulation
- Surface-rich high-energy γ (¹³⁷Cs, 660 keV); B=simulation
- Bulk-rich cosmic-induced high energy neutrons by ACV+CRT tagging ;
 B=same tag from NPCGe

TABLE I: The *p*-values for the stability hypothesis on the key parameters following a τ -scan of Figure 1. The ACV+CRV+B rates are insensitive of the choice of τ_0 .

Energy Range (keVee)	0.5 - 0.7	1.5-1.9
ϵ_{BS}	$< 10^{-5}$	$< 10^{-5}$
λ_{BS}	$< 10^{-5}$	$< 10^{-5}$
ACV+CRV+B'	0.24	0.16
ACV+CRV+S'	0.17	0.21
ACV+CRV+B	0.57	0.65

"Candidate Events" = ACV+CRV+B

- > ACV+CRV+B' + (ε_{BS} , λ_{BS}) correction > insensitive to exact BS-cut location
- Subtract flat γ background & L-X-ray
 Subtract flat γ background & L-X-ray
 residual spectrum for placing WIMP constraints
 I not-yet-accounted-for sub-keV events

WIMP allowed regions implied by other experiments.

Summary & Prospects

- Competitive and relevant results on low-mass WIMPs with sub-keV Ge detector, even at a surface location
- Presence of cosmic-ray crucial for this B/S calibration scheme
- Same design at underground laboratory (CDEX-1 @ CJPL) can only be better
- Extra experimental handles for background understanding/suppression
 - **••** CR- and AC-tagged events for calibration & normalization

 - Here Strate & Geep sites