

Ge detectors in fundamental research

direct DM search

search for $0\nu\beta\beta$ decay

spectroscopy

Klaus Eitel KIT Center Elementary Particle and Astroparticle Physics (KCETA)

Symposium of the Sino-German GDT Cooperation Tübingen, 8 April 2013

direct DM search refresher

direct DM search refresher

 EDW-II & CDMS PRD84 (2011)
 DAMA/LIBRA EPJ C56 (2008) CoGeNT PRL 106 (2011)
 CRESST II 2σ EPJ C72(2012)1971 CRESST II 1σ EPJ C72(2012)1971
 CDMS Science 327, 1619 (2010) + Low E, PRL 106 (2011)
 XENON100 PRL 107 (2011) XENON100 PRL 109, 181301 (2012)

EDW-II PLB 702,5 (2011) 329

+ PRD86, 051701(R) (2012)

Buchmüller et al, 2011

Bertone et al, 2011

requirements:

- Iow thresh
- Iow bgd
- discrimination power
- reliability
- mass production

→ CoGeNT

440g PPC @Soudan (2100mwe) with rise time discrimination

Contract Contract of the Contr	
Property	Value
Manufacturer	Canberra (modified BEGe)
Total Mass	443 gram
Estimated Fiducial Mass	$\sim 330 \text{ gram}$
Outer Diameter	$60.5 \mathrm{~mm}$
Length	31 mm
Capacitance	1.8 pF (at 3000 V bias)

C. Aalseth etal., arXiv:1208.5737

→ CoGeNT

7

H. Li et al., arXiv:1303.0925

0.95

 \rightarrow TEXONO

926g(840g_{fid}) PPCGe@Kuo-Sheng

0.9

∈

→ spectroscopy with 709g HPGe

1200

 \rightarrow CDEX

China Jin-Ping Underground Laboratory (CJPL)

CDEX-1 (running since 11/2010): 20g (4x5g) ULEGe &1kg-PPCGe (Canberra)

CDEX-10 (MC & design study): 10kg PPCGe surrounded by LAr active shielding

\rightarrow EDELWEISS

 χ scattering with energy deposit E_R leads to Δ T read out via thermometer \rightarrow detector with small V·C_V needed

lonization

- ➢ Heat measurement (NTD sensor)
 → E_{recoil} ≈ E_h (after NL correct.)
 ➢ Ionization measurement @ few V/cm
- n-type HPGe
- $> |N_a N_d| < 10^{10} \text{ cm}^{-3}$
- dislocations (EPD) ~2000/cm²

 \rightarrow EDELWEISS

2nd generation ID400

*measured via cosmogenic γ lines

 \rightarrow EDELWEISS

more than 350.000 γ 's γ suppression factor 3x10⁻⁵ 1 "NR" for every 30k γ 's (20-200keV)

90% CL signal region $Q = 0.16 E_r^{0.18}$ from <10 to 200keV (detection efficiency below 20keV)

P. Di Stefano et al., ApP14 (2001) 329; O. Martineau et al., NIMA 530 (2004) 426 ; A. Broniatowski et al., PLB 681 (2009) 305

rejection of surface events

 \rightarrow EDELWEISS

P. Di Stefano et al., ApP14 (2001) 329; O. Martineau et al., NIMA 530 (2004) 426 ; A. Broniatowski et al., PLB 681 (2009) 305

\rightarrow EDELWEISS

2. generation ID detectors with lateral planar electrodes

- \rightarrow EDELWEISS
- 3. generation: FID detectors with rings on all surfaces

\rightarrow EDELWEISS

 \rightarrow EDELWEISS

23 K Eitel | Symposium of the Sino-German GDT Cooperation | 08.04.2013

DM search with cryogenic HPGe detectors

\rightarrow Super-CDMS

15 ultra-pure Ge crystals: 76 mm x 25 mm (3" x 1"), 0.6 kg 4x2 high sensitivity **phonon channels :** *each quadrant* 2x2 **charge channels :** *outer ring, inner disc*

operating at T ~ 50 mK

iZIP: interleaved Z-sensitive Ionization and Phonon detectors

surface events

- show up on one detector side only
- have fast phonon signal

→ Super-CDMS

surface rejection requirements: surface event leakage to <2x10⁻⁵ at 90% CL ✓

Karlsruhe Institute of Technology

→ CDMS-lite (low ionis. thresh. expt)

amplification ~24 reached E_{thresh}=0.085 keV_{ee} reachable no more evt-based ER/NR discrimination Bias voltage accelerates e/h "terminal velocity" \rightarrow max KE of ~ 30 meV Under high bias, work done on e/h: > 10 eV >> 30 meV "excess energy" is shed as Luke phonons: $E_{Luke} = N_{e/h} \times eV_{bias}$ $V_{bias} \leq 70V$

26 K Eitel | Symposium of the Sino-German GDT Cooperation | 08.04.2013

\rightarrow Super-CDMS

SuperCDMS: 2 experiments with substantial detector improvements
 ➢ SuperCDMS-Soudan, operating 10 kg Ge array (5x 3det's à 600g; 1kg-det's)
 ➢ SuperCDMS-SNOLAB, proposed 200 kg Ge array

200live time [days] low-background 180 calibration 60 • total 80 -60 Total live time to date: 170 days 40200 12/03 13/01/14 12/04/21 12/09/21 12/10/30 12/12/07 12/05/30 12/07/012/08/14

\rightarrow generalities

energy [keV]

 \rightarrow GERDA

\rightarrow MAJORANA

MAJORANA DEMONSTRATOR located at Sanford Underground Research Facility (SURF) ~1.5 km (4200 m.w.e); PPC HPGe (86% ⁷⁶Ge_{enr})

\rightarrow MAJORANA

 natural HPGe and enriched HPGe ppc detectors are used

\rightarrow MAJORANA

MAJORANA DEMONSTRATOR status as of 03/2013:

installing experimental hardware at underground lab at SURF
operating 16 Cu electroforming baths (10 @ SURF, 6 at shallow underground site @ PNNL)
multiple det's working in string with full set of low bgd components
reduction and refinement processing facility built and operational
processing of 42 kg of ⁷⁶Ge_{enr} complete
production of enriched detectors at ORTEC ongoing
first batch of 5 ⁷⁶Ge_{enr} detectors shipped underground
characterization of enriched detectors underground
>50% of the electroformed Cu produced, including all of the major parts for cryostat 1
prototype cryostat fabricated and assembled
prototype vacuum system designed, reviewed, assembled, and being operated

2013 planning:

Cryostat 1 with 3 strings ⁷⁶Ge_{enr}, 4 strings Ge_{nat}

F. Fränkle, DPG Dresden, 2013

\rightarrow generalities

Best limits U, Th \cong 10 $\mu Bq/kg$ for reasonable time of measurement (~ 1 month)

The choice depends on what we want to measure

For all types: To improve sensitivity \rightarrow BACKGROUND REDUCTION

Pia Loaiza, ILIAS meeting, Jaca, Feb 2008

\rightarrow generalities

Background components in Ge spectrometry deep underground • External gamma radiation

- External gamma radiation (up to 2.6 MeV ²⁰⁸TI)
- neutrons from fission and (α,n) reactions
- Rn and its progenies
- Radioimpurities in cryostat

MOST IMPORTANT : MATERIAL SELECTION

Done in iterative steps

ILIAS* database on radiopurity of materials built using MySQL system combined with php scripts which allow to communicate from web page to the database http://radiopurity.in2p3.fr/

http://radiopurity.org (AARM and others)

*FP6 European project for the development of the underground science

nuclide (line keV)	GATOR	Ge@LSM	GeMPI	intrinsic
²³⁸ U/ ²¹⁴ Bi (609)	0.6±0.2	<0.30	0.50±0.45	bgd in cts/day
²¹⁰ Pb (46)	NA	1.76±0.25	NA	
¹³⁷ Cs (662)	0.3±0.1	<0.26	NA	
⁴⁰ Ka (1461)	0.5±0.1	<0.36	0.6±0.4	
²³² Th/ ²¹² Pb (238)	<0.5	0.28±0.18	NA	

\rightarrow AGATA

HPGe detectors in fundamental research

\rightarrow outlook

ionisation&heat HPGe bolometers in direct DM search

15kg Super-CDMS@SUL & 30kg EDW running → SuperCDMS@SNOLAB/EURECA → 150kg...1000kg

ppc Ge detectors in direct DM search

CoGeNT running \rightarrow C-4 (10x CoGeNT@SUL) TEXONO running \rightarrow CDEX 10kg...1000kg

BEGe/ppc Ge in 0vββ search

GERDA ph1 (15kg ${}^{76}\text{Ge}_{enr}$) running \rightarrow ph2 (>20kg ${}^{76}\text{Ge}_{enr}$) with BI = 0.001 cnts/(keV kg y) MAJORANA demonstrator ~5kg ${}^{76}\text{Ge}_{enr}$ in 2013 \rightarrow 40kg

> coaxial/segmented/planar Ge in spectroscopy

GeMPI/GATOR/Ge@LSM: ultra-low-bg spectroscopy for material selection AGATA: 4π spectrometer with excellent eff. (82%) (tracking/shaping/simulation)

- → Florian Fränkle (UNC; Majorana)
- → Alex Broniatowski (CSNSM; Edelweiss)
- → Jorge Puimedon (Zaragoza; Rosebud)
- \rightarrow Pia Loaiza (LSM)
- → Hassan Chagani (UMN; Super-CDMS)
- → Ritoban Thakur (Fermilab; CDMS-lite)

apologies to experiments/activities not covered