Ge Detectors in Space: Studying Cosmic Nucleosynthesis with INTEGRAL

2.0

0.00

490

510

E (keV)

500

Roland Diehl

530

Astronomical Observations throughout the electromagnetic spectrum

Gamma-Ray Astronomical Telescopes: Interaction of HE photons with matter

Gamma-Ray Astronomy Instruments Photon Counters and Telescopes

• Simple Detector (& Collimator)

(e.g. HEAO-C, SMM, CGRO-OSSE) Spatial Resolution (=Aperture) Defined Through Shield

Coded Mask Telescopes

(Shadowing Mask & Detector Array)

(e.g. SIGMA, INTEGRAL) Spatial Resolution Defined by Mask & Detector Elements Sizes

O Focussing Telescopes

(Laue Lens & Detector Array)

(CLAIRE, MAX) Spatial Resolution Defined by Lens Diffraction & Distance

Compton Telescopes (Coincidence-Setup of Position-Sensitive Detectors) (e.g. CGRO-COMPTEL, LXeGRIT, MEGA, ACS) Spatial Resolution Defined by Detectors' Spatial Resolution

Achieved Sensitivity: ~10⁻⁵ ph cm⁻² s⁻¹, Angular Resolution \geq deg

The INTEGRAL Spectrometer (SPI)

- Coded-Mask Telescope
- 19 Ge Detectors (5.5x5.5x7cm)
- BGO Anticoincidence Detector & Shield
- Stirling Cryocooler
- Energy Range 15-8000 keV
- Energy Resolution ~2.2 keV @ 662 keV
- Angular Resolution ~2 arcmin
- Field-of-View 16x16°
- Timing Resolution 52 μs

Roland Diehl

SPI Detectors

☆ n-type

(holes travel to outer electrode, ie fast)

🛠 Hexagonal, co-axial

^I 69.42mm high, 32 mm sides (diameter 55 mm) → 178 cm³, 951g

Central bore 6mm diameter, 55mm length

Backside passivated (low leakage currents)

☆ High-purity: Impurity Levels 0.5...1.5 10¹⁰

Produced by UMICORE (Olen, Belgium)

Encapsulated in Al housing

- Open housing (vacuum)
 Outer diameter 60.65 mm; 1134g
- ☆ Manufactured by Eurisys Measures (Strasbourg, France)

☆ Operational Conditions ^{IV} 3500...4500 V IV 80...90K

Roland Diehl

The SPI Detector Set

"Camera" = 19 Detectors ഹ്ല് ☆ Total area 508 cm² 13 15 12 16 ☆ Total weight of Ge: 18kg 5 3 17 0 11 ☆ Mounted on Be plate 2 18 10 [©] PA1 on Cold Plate 7 PA 2 on 210K plate Signal: 50 mV / 1 MeV Top PA 1 array view SPI ന്ല

SPI)

Analogue Electronics:

- Cold-Plate Pre-Amplifier 1 (80K) 210K Plate Pre-Amplifier-2 with FET; AFEE at ambient ~300K
- ☆ Signal 50 mV / 1 MeV energy deposit
- \bigstar Signal time resolution (processing time) 26 μs
- ☆ Saturation clipping at 14 MeV
- A Saturated-event electronics dead time 100 μs
- ☆ PSD circuitry

Digital Electronics: ☆ DFEE

- Radiation-hardened CMOS ASIC (TEMIC/Atmel)
- 8 Hz clock
 50 ns event timing
 FIFO event buffering
 725 ns ACS veto pulse

SPI Detector Cooling System

Electro-Mechanical Cooling System

☆ 4 mechanical (Stirling) coolers
Provided by MMS Astrium/ESA
Cooling to 80K, ~few W power

Detectors enclosed in Be housing (cold box)

Stabilization, passive cooling

Careful thermal insulation

Total weight of cryostat ~100 kg

Ammonia heat pipe system Tube Coperated near freezing (196K)

Electronics Control

Antifreeze of Ammonia Heatpipes
Annealing

SPI Prelaunch Calibration

Bruyères Le Châtel

🖈 April 2001

- 108 h accelerator time
- Also using strong radioactive sources

SPI Ground Calibration Data, Bruyères Le Châtel

☆ Different Photon Sources from Nuclear Resonances

 $^{\odot}$ ¹³C(p, γ)¹⁴N with narrow resonance at E_p 1742 keV, broad resonance at 550 keV

SPI Detector Electronics 10-8000 keV
 Single- and Multiple-Detector Events

SPI Prelaunch Calibration Results

☆ Overall efficiency: *×_____ Average detectors 1 to 18 - Detector 0 \times \times Simulation + ε ΤI ж by D. Attié, P. Paul & S. Sturner 0 10 100 1000 10000 Energy (keV) 0,1 59,54 keV 0,0 **☆** Detector 122,06 keV 165.86 keV 356,02 keV Homogeneity: 383,85 keV -0,1 514,01 keV (E-E_{mean})/E_{meal} 661,7 keV 834.84 keV 898,04 keV 1115,55 keV -0,2 1173,34 keV 1274,5 keV 1332,5 keV 1836,06 keV -0,3 ×Crystal weight detector illumination at α=0° without mask -0,4 2 0 1 3 5 6 7 9 10 11 12 13 14 15 16 17 18 Detector 4 8 Attie et al 2003

Ge Detector Workshop, Tübingen (D), 08-12 Apr 2013

SPI Sensitivity for Gamma-Ray Lines

The early estimate had ignored the instrumental line contributions
Pulse Shape Rejection of background is less effective than estimated

Roland Diehl

AGaDe Workshop, Garching (D), 2-5 Jun 2008

Ge Detector Workshop, Tübingen (D), 08-12 Apr 2013

Roland Diehl

INTEGRAL and it's Ge γ -Spectrometer for Space

IBIS coded mask JEM-X coded masks Star trackers OMC SPI SPI: Coded-Mask Telescope 15-8000 keV Energy Resolution ~2.2 keV @ 662 keV Spatial Precision 2.6° / ~2 arcmin Field-of-View 16x16° Service module

INTEGRAL: Ge γ -Spectrometry of Cosmic Sources

- Coded-Mask Telescope
- 19-element camera
- 16° field of view, 2.7°
- 20-8000 keV

INTEGRAL: Ge γ -Spectrometry in Space!

Ge Detector Workshop, Tübingen (D), 08-12 Apr 2013

Roland Diehl

INTEGRAL/SPI Spectra (3 days)

The INTEGRAL ²⁶Al Sky Survey

Pointing on Sky Varies in ~30 min Steps

Energy Spectra: Characteristic Examples

Solar Activity and SPI Background (irem study 2028)

Energy Spectra: Characteristic Examples

Contaminations from Underlying or Nearby Instrumental Lines?

Ge Detector Workshop, Tübingen (D), 08-12 Apr 2013

Results: Simple/Straightforward ON/OFF

☆ Separate Database:

ON= pointing latitudes <30° (11.08 Ms)</p>

GFF= pointing latitudes >30° (2.1 Ms)

☆ Subtract & Inspect

- ^C13σ Residual Signal
- Width ~ "instrumental" Width < background feature at 1810 keV</p>
- Intensity ~as Expected
 - 21000 counts; expect 25000 from I~3 10⁻⁴ ph cm⁻² s⁻¹ rad⁻¹ for this exposure (at GC 3.31 Ms) and A_{eff}~25 cm²

→ A useful first-order check

12.90 sigma of detection

High-Resolution Spectroscopy with SPI

=0.0, f_I=1.00, Δx=-0.00 **Cosmic-Ray Damage of Charge Collection** τ =0.1, f=1.02, Δx =-0.01 τ =0.2, f=1.08, Δx =-0.01 1.0 $\tau = 0.3$, f = 1.14, $\Delta x = -0.01$ -··· τ=0.4, f_j=1.21, Δx=-0.02 **Degradation with time** \mathbf{A} τ=0.5, f=1.28, Δx=-0.02 0.8 ☆ Annealings Intensity Response 0.6 Degradation **Time-Variable Spectral Response** at 1809 keV 0.4 Line Shape = Convolution [Gaussian * Exponential] $\frac{1}{3}$ 0.2 **Degradation Model (piece-wise linear)** \mathbf{A} 0.0 \mathbf{A} Next: Correct Short-term (<1 Orbit) -3-2 -10 1 $E - E_0$ **Gain Variations with Detector Temperatures** 2.0 415 keV - 460 keV 860 keV - 930 keV * 1060 keV - 1175 keV * 1740 keV - 1820 keV * Detector Degradation with Time (improved data selections; Aug'05) Correlation for energy Revolution 42 Correlation for energy Revolution 66 1.5 Drift of Gains Temperature Orbit with moderate ΔT tau [keV] 1.004 Peak Energy Shift Orbit with large $\Delta T \ge *_{*} *$ 1.0 1.0002 (JeU) ⊒ 1.002 1.0000 0.5 0.9998 1.000 0.9996 0.0 250 0.998 0 50 100 150 200 300 100 Delta T [K] 84.5 85.0 Delta T [K] time [rev] **Temperatur-Difference**

²⁶Al Line Analysis with SPI

Analysis Method:

Fitting of Background and Sky Distribution Models in Fine E Bins

Comparison to "predicted" Features Shapes

-> Detection of Celestial ²⁶Al

Nuclear Gamma-Ray Line Telescopes / Missions

☆ Compton Gamma-Ray Observatory 1991-2000 NASA

INTEGRAL Observatory 2002-(2014+) ESA

☆ Earlier
 Balloone-Borne
 Experiments
 ☆ HEAO-C
 1978

Nuclear Gamma-Ray Line Telescopes / Missions

Radioisotope Gamma-Ray Lines and their Messages

Isotope	Mean Lifetime	Decay Chain	γ -Ray Energy (keV)	
⁷ Be	77 d	⁷ Be → ⁷ Li*	478	
⁵⁶ Ni	111 d	$^{56}Ni \rightarrow {}^{56}Co^* \rightarrow {}^{56}Fe^*+e^+$	158, 812; 847, 1238	
⁵⁷ Ni	390 d	⁵⁷ Co→ ⁵⁷ Fe*	122	
²² Na	3.8 y	22 Na \rightarrow 22 Ne* + e ⁺	1275	individual
⁴⁴ Ti	89 y	⁴⁴ Ti→ ⁴⁴ Sc*→ ⁴⁴ Ca*+e ⁺	78, 68; 1157	object/event
²⁶ AI	1.04 10 ⁶ y	$^{26}AI \rightarrow ^{26}Mg^* + e^+$	1809	cumulative
⁶⁰ Fe	3.8 10 ⁶ y	⁶⁰ Fe → ⁶⁰ Co* → ⁶⁰ Ni*	59 , 1173, 1332	From many
e⁺	10 ⁵ y	$e^++e^- \rightarrow Ps \rightarrow \gamma\gamma$	511, <511	events
	•	•		+ -

Massive-Star Interiors

☆ Massive Stars are:

- Key Producers of Cosmic 'Metals'
- **Wey Agents for Cosmic Evolution in Galaxies**

☆ How does the Interior Structure Evolve in Late Stages?

- Which "Shells" are Active?
- Which Nuclei are Produced? (ejected?)
- What are the Time Scales?
- ^{CP} How does all this Depend on Rotation?
- How does all this Depend on Metallicity?

Main Sources of ⁴⁴Ti, ²⁶Al, ⁶⁰Fe

²⁶Al in our Galaxy: γ-ray Image and Spectrum

CGRO (<2000) / INTEGRAL (>2002) Spectroscopy

Ge Spectroscopy of ²⁶Al Line with SPI/INTEGRAL

- ☆ ²⁶Al Glow of Inner Galaxy Confirmed, at ~Known Flux Level
- ☆ Line is Resolved, and not as broad as suggested (by GRIS)

Diehl et al., Astron. & Astroph. (2006)

SPI Opened the '²⁶Al Line Spectroscopy' Science COMPTEL was superior wrt. Large-Scale Imaging

Measuring the ²⁶Al Gamma-Ray Line from the Galaxy

Increasing Exposure (Oct 2002.... Today)
 → Improved Statistical & Systematic Precision

High-Resolution Gamma-Ray Spectroscopy Maintained in Space: SPI on INTEGRAL

✓ 19 Annealings
 Successfully
 Completed
 (Jul 2012)

✓ 15 of 19
 Detectors
 Operational with
 Fine Resolution

Cosmic-Ray Irradiation -> Degradation of Charge Collection

- ☆ ~2% per Orbit, ~20% in 6 Months (@1 MeV)
- Annealing
 - ~100-200 hrs at 105°C, few hrs at 90K

Roland Diehl

Ge Detector Workshop, Tübingen (D), 08-12 Apr 2013

How Wide is the Celestial ²⁶Al Line?

♦ SPI Response * Celestial Line -> Actually-Observed Line Feature

Fit Expected Spectral Signature to the Sky&Bgd-Fitted Spectral Signal
 Perform Statistical Uncertainty Analysis (Monte Carlo Markov Chain)

Ge Detector Workshop, Tübingen (D), 08-12 Apr 2013

26AI as a Tool to Study ISM Dynamics

The ISM is a non-Equilibrium and Highly-Dynamic Medium

☆ No 'Pressure equilibrium' ('phases')

Numerical Simulations of ISM (MHD 3D)

- Large-Scale Dynamics and Evolution Run $\Delta x = 0.5 \text{ pc}; \sigma/\sigma_{Gal} = 1$ 300.00 Myr
- MC Outflows, Destruction
- Energy Feedback into ISM

Measuring the ²⁶Al Gamma-Ray Line in Detail

Line Width: (from 10 years of data, up to rev 1240) (Diehl et al. 2013)
 ☆ Account for Instrumental Line Width (~3 keV)
 ☆ Extract Additional (astrophysical) Broadening → Doppler velocity

Spatially-Resolved Spectroscopy

Analyze Line Shape and Position for Different Directions

10 1-27

o

-10

(Kpc)

²⁶Al in the Inner Galaxy: Spectral Response in Rol's

Are there systematic response variations which could mimic a longitude-velocity

Modelling SPI's response

- Radiation damage causes asymmetric line with low-energy tail
- Good fit results obtained with a convolution of Gaussian and truncated exponential

Motion of Hot Gas in the Inner Galaxy – ²⁶Al

Hot gas streaming away from star-forming clouds

enhanced star formation in spiral arms; gas/parental-cloud momenta incur one-sided outflow (forward, i.e. following & enhancing bulk velocity)

⁶⁰Fe Emission is Seen from the Galaxy

☆ Gamma-ray Signal Now Beyond 'Hints'/'Limits' (5σ) ☆ ⁶⁰Fe/²⁶Al Emission Ratio ~15%

Science Result: ⁶⁰Fe

☆ Marginal Result
Problematic Instrumental Lines
– ⁶⁰Co Buildup, 1337 keV Ge Line

Ge Detector Workshop, Tübingen (D), 08-12 Apr 2013

"Imaging" Bgd: Interior, or from Outside

SPI 19-Ge Detector Arrangement within BGO Shield

☆ Use Relative Contributions to Signal per Detector

Homogeneous Irradiation & Performance <-> Equal Shares

Massive-Star Structure Diagnostics: ⁶⁰Fe/²⁶Al Ratio

- Two Isotopes from Same Source Type → Eliminate Astronomical Bias
 - Site Detail (adapted from Heger) 22.0 M, net nuclear energy generation (burning plus neutrino losses) in erg g $^{-1}\,{\rm s}^{-1}$ ×10⁻¹ >10⁰ ×10¹ >10² ×10³ >10⁴ >10⁵ ×10⁸ >10⁷ ×10⁸ >10⁹ ×10¹⁰ >10¹¹ 20 envelop giant) net nucle ar energy loss (burning plus neutrino losses) in erg $\mathrm{g}^{-1}~\mathrm{s}^{-1}$ 1¹⁵ x - 10¹² x - 10¹¹ x - 10¹⁰ x - 10¹⁰ x - 10¹² x - 10¹² x - 10¹⁰ x - 1 ²⁶Al Production IcOgi: time=4000 s v_{arms.max}=14.4 km/s d by mass loss fue to stellar winds) onvection. semiconvection ⁶⁰Fe Production envective envelope (red supergiant) 5 10 15 20 25 30 x [Mm] h shell burning ര He shell burning 5 C shell burning C shell burning O shell burning burning 🛃 O ST // -8 6 2 -2 -6 4 n -4 log (time before SN) [y]

Production-

⁶⁰Fe in the Current ISM

Gamma-Ray Observations: RHESSI, INTEGRAL

e⁺ Annihilation Conditions and the Line Width

☆ e⁺ annihilation \rightarrow 511 keV photons (+continuum)

Annihilation Environments:

Galactic Positron Annihilation: Summary

- Annihilation γ-Rays are a New Astronomical Domain / Window
- ☆ Galactic-Disk Emission: More-than-enough Sources, probably Nucleosynthesis; Bulge Emission: a Puzzle
- ☆ Positron Transport and Annihilation Environment Diagnostics → Cosmic-Ray and ISM Astrophysics
- ☆ Spatial Profile of Annihilation Emission
 → Discriminate Candidate Sources
 - Disk versus Bulge Sources
 - Galaxy Survey
 - Deep Exposures are Needed to Constrain Contributions of Specific Source Types (Individual, Groups)
 - SPI++, and Next-Generation Instruments

LECTURE NOTES IN PHYSICS 812 Astronomy with Radioactivities

Ge Spectroscopy of Cosmic Radioactivities Summary

- ☆ Radioactivity provides a unique / different astronomical tool
 - [©] Intensity change only due to radioactive decay
 - Thermodynamic gas state unimportant
- ☆ Ge provides Spectroscopy (line shapes)
- **☆ Supernova interiors:**
 - ^C SNIa brightness evolution and ⁵⁶Ni yield calibration
 - Core collapse evolution into an explosion with ⁵⁶Ni and ⁴⁴Ti production
- ☆ Massive-star shell structure and evolution:
 - <sup>G²⁶Al production in core H burning and late shell burning,
 ⁶⁰Fe production in C and He shells
 </sup>
- ☆ Chemical evolution uncertainties:

ISM state and dynamics around positron sources,

and around massive-star regions

Ge Detector Workshop, Tübingen (D), 08-12 Apr 2013

Roland Diehl