Digital Pulse Processing of Semiconductor Detector Signals

A. Hennig, M. Elvers, J. Endres, C. Fransen, J. Mayer, L. Netterdon,
 G. Pascovici, S. Pickstone, P. Scholz, T.-M. Streit, N. Warr,
 M. Weinert, and A. Zilges

Institute for Nuclear Physics, University of Cologne

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung Symposium of the Sino-German GDT Cooperation April 2013, Tübingen

Bonn-Cologne Graduate School of Physics and Astronomy Supported by the DFG under contract ZI 510/4-2, the BMBF under contract (06KY9136) and the Bonn-Cologne Graduate School of Physics and Astronomy

Outline

- Motivation of digital pulse processing
- The DGF-4C module
- Results with HPGe and Silicon detectors
- Summary

The HORUS spectrometer

The HORUS spectrometer at the University of Cologne:

- 14 HPGe detectors for high resolution γ spectroscopy
- BGO shields
- Absolute efficiency of up to 5% at 1.33 MeV

- 8 ∆E-E sandwich silicon detectors for charged particle spectroscopy
- Particle identification
- Solid angle coverage of 4%

The HORUS spectrometer

The SONIC array:

- 8 ∆E-E sandwich silicon detectors for charged particle spectroscopy
- Particle identification
- Solid angle coverage of 4%

The HORUS spectrometer at the University of Cologne:

- 14 HPGe detectors for high resolution γ spectroscopy
- BGO shields
- Absolute efficiency of up to 5% at 1.33 MeV

Analog vs. digital spectroscopy

Analog signal processing

- Filtering of signals in different modules to obtain spectroscopic quantities
- Pulse shape analysis hard to implement
- Noise important at all stages
- Highly specialized electronics
- Optimized in \approx 50 years of use

Digital signal processing

- Sampling of the signal in the MHz regime provides all spectroscopic information
- Pulse shape analysis can be easily implemented
- Noise important only before sampling
- Commonly used components (consumer electronics)

Signal processing - sampling

• Sampling of the preamplifier signal at a rate of 10's of MHz

Signal processing - sampling

- Sampling of the preamplifier signal at a rate of 10's of MHz
- Online signal processing using a combination of FPGA and DSP

Signal processing - sampling

- Sampling of the preamplifier signal at a rate of 10's of MHz
- Online signal processing using a combination of FPGA and DSP

- Slow filter: Energy determination \rightarrow filter amplitude
- Fast filter: Time determination → leading edge trigger
 Trigger to select events of interest (e.g. Pile-up rejection)

A. Hennig, IKP, University of Cologne, AG Zilges

The Digital Gamma Finder (DGF-4C) ^[1,2]

- Revision F modules cost: about 7000 €
- Pipeline ADC: digitizing sampling rate 80 MHz depth: 14 bit
- FPGA: filter algorithms signal shaping and pile-up rejection
- DSP: signal processing determination of energy and time of the signal
- Readout of the data via USB in event-by-event mode

[1] W.K. Warburton *et al.*, Appl. Rad. and Isot. **53** (2000) 913[2] XIA LLC, Hayward, CA, USA – http://www.xia.com

The Digital Gamma Finder (DGF-4C)^[1]

- Pipeline ADC: digitizing sampling rate 80 MHz depth: 14 bit
- FPGA: filter algorithms signal shaping and pile-up rejection
- DSP: signal processing determination of energy and time of the signal
- Readout of the data via USB in event-by-event mode

[1] W.K. Warburton *et al.*, Appl. Rad. and Isot. **53** (2000) 913[2] XIA LLC, Hayward, CA, USA – http://www.xia.com

Results - energy resolution

Test with 80% ^(*) HPGe detectors:

(*) Relative to 3 x 3 inch cylindrical Nal detector

Results - energy resolution

Test with 80% ^(*) HPGe detectors:

 Energy resolution is slightly worsened due to beam-induced noise and higher countrate

^(*) Relative to 3 x 3 inch cylindrical Nal detector

Signal processing of Silicon detector signals

Offbeam test:

 Energy resolution measured with triple-α calibration source:

∆E (5486 keV): 12.00(8) keV

Signal processing of Silicon detector signals

Offbeam test:

Thin detectors: $d = 50 \ \mu m$

2

3

17

16

15

14

13

12

11

∆E_{FWHM} [keV]

Energy resolution measured ٢ with triple- α calibration source:

∆E (5486 keV): 12.00(8) keV

A. Hennig, IKP, University of Cologne, AG Zilges

detector number

5

6

• Time determination in DGF-4C: leading edge trigger

Amplitude and risetime-walk effect worsens the timing resolution

• Time determination in DGF-4C: leading edge trigger

Amplitude and risetime-walk effect worsens the timing resolution

- Time determination in DGF-4C: leading edge trigger
 - Amplitude and risetime-walk effect worsens the timing resolution

Correction for amplitude walk:

Correction for amplitude walk:

Correction for amplitude walk:

- Timing resolution in coincidence with 1173 keV: $\Delta T \approx 30$ ns
- Improvements with a digital constant fraction algorithm planned ^[1]

[1] A. Fallu-Labruyere et al., NIM A 579 (2007) 247

1200

Deadtime contribution in the DGF's

Events not processed in the DGF

 \rightarrow Average values, obtained with ²²⁶Ra calibration source

External gating conditions

Applications:

- pulsed beam
 - \rightarrow "beam-on" condition
- γγ-coincidence experiments
 → multiplicity filter

Advantages:

- reduced background
- reduced deadtime
 - \rightarrow less data to process for DSP
 - \rightarrow less data to readout

- DGF-4C modules: late event validation via GFLT input
- γγ-coincidence experiment: number of detected events increased by 30%

- Digital signal processing yields various benefits compared to analog spectroscopy
 - \rightarrow Easy PSA, low-cost, less bulky setup,
- DGF-4C modules for readout of HORUS and SONIC
 - \rightarrow Processing Silicon and Germanium detector signals
 - \rightarrow Channel specific VETO input for BGO suppression
 - \rightarrow Good energy and time resolution
 - \rightarrow Reduced deadtime compared to analog systems

Thanks to:

V. Derya, M. Elvers, J. Endres, C. Fransen, W. Hennig, J. Mayer, L. Netterdon, S. Pascu, G. Pascovici, S. Pickstone, P. Scholz, A. Sauerwein, M. Spieker, T.-M. Streit, N. Warr, M. Weinert and A. Zilges

Advantages of Digital Data Acquisition

- Cost and space saving
- Preamplifier signal is sampled right away
 - Reduction of signal instabilities
 - --> Conservation of signal quality
- Reduced deadtime
 - --> Processing of higher countrates
- Comparable energy and timing resolution for Silicon and HPGe detectors

Digital data acquisition with DGF-4C modules

Advantages of Digital Data Acquisition – Deadtime

Contributions to deadtime - analog:

Examples:

- Spectroscopy amplifier
 - Pile-up rejection
- ADC
 - Comparison to reference ladder
- Data acquisition
 - Blocked by inhibit logic

one HPGe at 10 kHz: 10 - 25 %

one HPGe at 10 kHz: 11%

20 % at 15 kHz master trigger rate* 51 % at 5 kHz master trigger rate**

Total: 41-56 % events lost

* measured with a 14 HPGe detector array at the HORUS spectrometer

** measured with a 8 HPGe detector array at KVI Groningen

Energy Resolution – τ Correction

- Time constant τ most important for good energy resolution
- Adjust τ parameter to get best peak shape and resolution

A. Hennig, IKP, University of Cologne, AG Zilges

Activation Measurement of the Reaction ¹⁴¹Pr(α ,n)¹⁴⁴Pm

Timing Properties

- Time determination in DGF module: leading edge trigger
- Amplitude walk: Depending on the energy deposited in the crystal

• Risetime walk: Depending on the interaction point in the crystal

 Improvement of timing resolution with a digital constant fraction algorithm planned ^[1]

[1] A. Fallu-Labruyere et al.,Nucl. Instr. Phys. Res. A **579** (2007) 247

Treatment of Random Coincidences

Timedifference spectrum between two detectors:

Create peak and background matrices

Final matrix: difference of peak and background matrix

Active Compton Suppression

Energy Resolution – Analog vs. Digital

External Trigger Conditions

Late event validation using the GFLT

External Trigger Conditions

Late event validation using the GFLT

Gate signal to trigger input

Readout deadtime reduced to 0.9%

The ¹²⁴Sn(¹³C,3n)¹³⁴Ba Experiment

γγ-Coincidence Experiment

Reaction: ¹²⁴Sn(¹³C,xn)^{137-x}Ba

- Use of 13 HPGe detectors
- Production of well studied
 nuclei ¹³³Ba^[1,2] and ¹³⁴Ba^[3,4]
- Beam energy: 46 MeV, calculation with CASCADE

Aim of the test experiment:

- Acquisition of γγ coincidences
- Investigation of energy and timing resolution
- Reproduction of angular correlations of coincident γ -rays

[1] J. Gizon et al., Nucl. Phys A 252 (1975) 509
[2] S Juutinen et al., Phys. Rev. C 51 (1995) 51

[3] M. Behar et al., Nucl. Phys. A **192** (1972) 218
[4] T. Lönnroth et al., JYFL Ann. Rep. **89-90** (1990) 99

γγ Angular Correlations

Angular distribution of γ -ray emission from an aligned nucleus:

- Sorting of detector pairs in 17 correlation groups that share the same angles ϕ, θ_1, θ_2
- Fit of $W(\theta_1, \theta_2, \phi)$ to intensities in correlation groups

Test of the Data Acquisition

A. Hennig, IKP, University of Cologne, AG Zilges

γγ Angular Correlations in ¹³⁴Ba

A. Hennig, IKP, University of Cologne, AG Zilges

γγ Angular Correlations in ¹³⁴Ba

A. Hennig, IKP, University of Cologne, AG Zilges

γγ Angular Correlations in ¹³³Ba

γγ Angular Correlations in ¹³³Ba

A. Hennig, IKP, University of Cologne, AG Zilges

Test of the Digital Data Acquisition System

Reaction: ¹²⁴Sn(¹³C,4n)¹³³Ba

- Beam energy: 46 MeV
- Beam current: 10 pnA
- HPGe count rates: 5 -14 kHz
- ΔE_{FWHM} : 1.9 to 2.4 keV

Single spectrum Ge08

70000

60000

50000

40000

30000

20000

10000

counts / 0.5 keV

0 200 300 400 500 600 700 800 9 energy [keV] A. Hennig, IKP, University of Cologne, AG Zilges

Correction for Solid Angle Coverage

Neglecting the extension of the source: $A_{kk} = A_{kk}^{exp} / Q_{kk}$ Attenuation factors $Q_{kk} = Q_k(1) \cdot Q_k(2)$ with $Q_k(i) = J_k(i) / J_0(i)$ $= \int \mathcal{E}_i(E,\alpha) \cdot P_k(\cos\alpha) |\sin\alpha| d\alpha$ 1.1 k=2, $\varepsilon(E,\alpha)$, calculated with qc k=2, ε (E), analytic k=4, $\varepsilon(E,\alpha)$, calculated with qc 1.0 k=4, ε (E), analytic k=6, $\varepsilon(E,\alpha)$, calculated with qc 0.9 Qk/Q0 for Ge13 0.8 SOURCE 0.7 0.6 COUNTER 0.5 500 1000 1500 2000 2500 3000 J. S. Lawson and H. Frauenfelder, energy [keV] Phys. Rev. 91 (11953) 649

A. Hennig, IKP, University of Cologne, AG Zilges

Correction for Solid Angle Coverage

- Effect of solid angle correction with statistical error bars
- Minor changes in determined multipole mixing ratios

The ¹⁴⁰Ce(p,p'γ) Experiment

Particle-γ Coincidence Experiment

- Coincident detection of scattered proton and deexciting γ ray
- Particle detector array SONIC embedded into HORUS spectrometer

Reaction: ¹⁴⁰Ce(p,p'γ)

- Beam energy: $E_p = 10.4 \text{ MeV}$
- Beam current: $I_p = 0.5 \text{ pnA}$

Decay of Two-Phonon State in ¹⁴⁰Ce

Decay of two-phonon state in ¹⁴⁰Ce

The sorting code SOCO

SOrting code COlogne (SOCO)^[1]

- Evaluation software for double coincidence listmode data
- Features:

[1] M. Elvers, PhD thesis, University of Cologne (2011)

SOrting code COlogne (SOCO)^[1]

- Evaluation software for double coincidence listmode data
- Features:
 - --> Use of multiprocessing
 - Provides matrices, single spectra and projections, as well as time-difference spectra
 - --> Support of different listmode formats:
 - **FERA** (old cologne data format)
 - XIA (data format for the new digital data acquisition)
 - **GASP** (INFN Legnaro, IFIN-HH Bucharest)

[1] M. Elvers, PhD thesis, University of Cologne (2011)

A. Hennig, IKP, University of Cologne, AG Zilges

A. Hennig, IKP, University of Cologne, AG Zilges