The "Max-Planck-Institut für Physik"

Dr. Iris Abt

and its Scientific Program

The Max-Planck-Society

The MPG is a public society to

support sciences.

Employees	16873*
Scientists	5222
PHD students	1505
plus quests	4641

80 Institutes

3 Sections: CPT, BMS, GSHS

Employees	7165*
Scientists	2595
PHD students	712

*as off 1.1.2011

Budget 2012: 1.46 Mrd Euro

		iser-Wilhelm-Institut t Einstein
1942: Direkto	or: Wern	er Heisenberg
1946: Refoun	ded as l	Max-Planck-Institut
under H	leisenb	erg in Göttingen
1958: Move to	o Münch	
6 directors, i	.e. 6 de _l	partments <3 x 3 x
Employees	300	Large technical
Scientists	140	department,
PHD students	60	apprentices
plus guests	30	administration

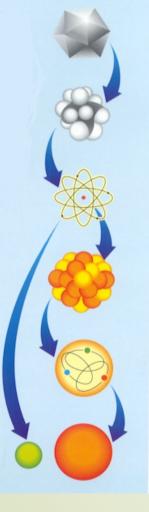
Program

To find out what keeps the world together deep inside.

- High Energy Physics
- ZEUS
- **ATLAS**
- Neutrino- and **Astroparticlephysics**

- Detector Developement
- Theory

 Technical Department and Semiconductorlab



The Innermost

Crystal 1 cm


Molecule 10⁻⁷cm 0,0000001

Atom 10 ⁻⁸cm 0,000000 01 Nucleus 10 ⁻¹²cm 0,000000 00001

Proton 10 - ¹³ cm Neutron

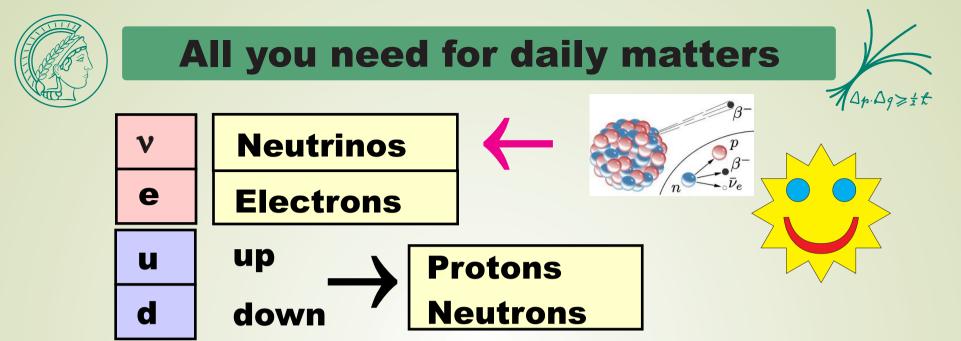
Quarks < 10 ⁻¹⁶cm Elektrons

The innermost is empty.

Everything we see is made out of 3 particles.

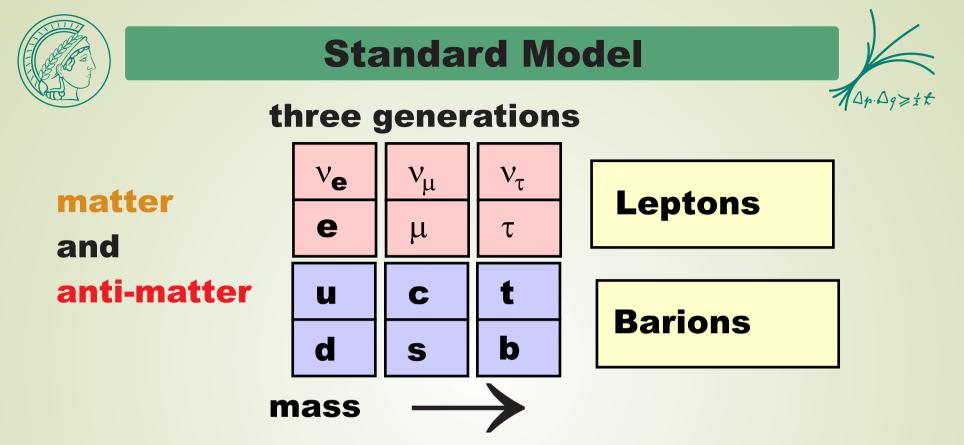
Chemical Elements

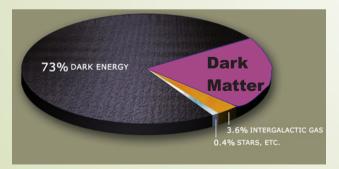
1 H	The chamistry of the elements																														
3 Li	4 Be		The chemistry of the elements													5 B	6 C	7 N	<mark>8</mark> 0	9 F	10 Ne										
11 Na	12 Mg	1	is the physics of the electrons													13 Al	14 Si	15 P	16 S	17 Cl	<mark>18</mark> Ar										
19 K	20 Ca	1	of the atoms.									21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	<mark>36</mark> Kr				
37 Rb	38 Sr	1											39 Y	40 Zr	41 Nb		43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe			
55 Cs	56 Ba	57 La	57 58 59 60 61 62 63 64 65 66 67 68 69 70 .a Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb									71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os		78 Pt	79 Au	<mark>80</mark> Hg	81 TI	82 Pb	83 Bi	84 Po		<mark>86</mark> Rn				
87 Fr	88 Ra	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo


Alkali metals	Alkaline earth metals	Lanthanides	Actinides	Transition metals
Poor metals	Metalloids	Nonmetals	Halogens	Noble gases

The nuclei are made of protons and

neutrons, and they are made out of


-1/3 ° ^{2/3} "colored" up and down Quarks and Gluons.



This would be enough to make us happy. But...

- there is a "heavy electron", muon, abundant in cosmic ray showers
- in our labs we make heavy quarks

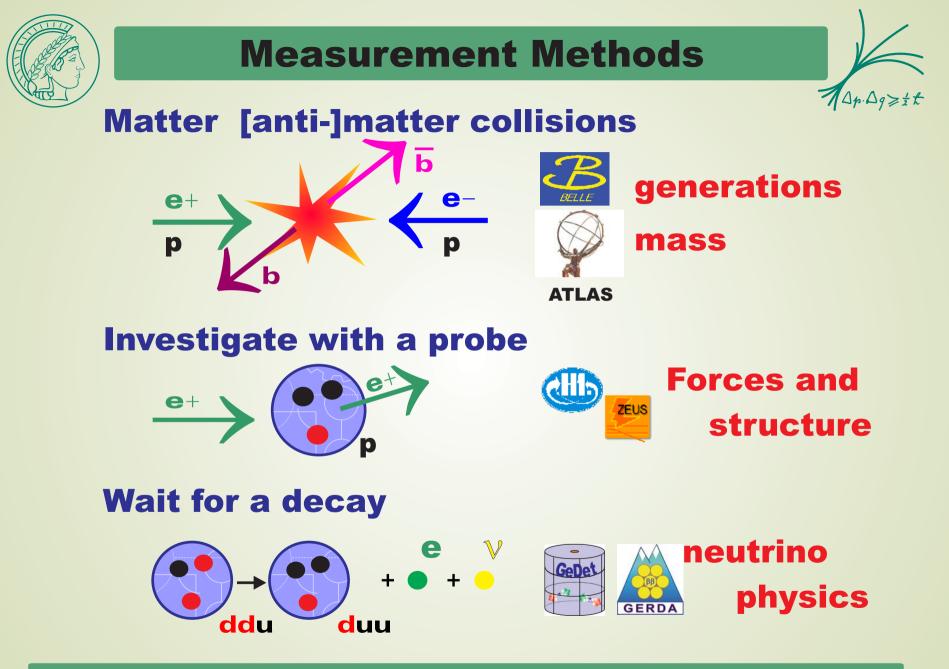
We only find matter in the universe, but it only accounts for 4% of its energy content.

The MPI and its Scientific Program, Dr. Iris Abt

Four forces in comparison electroweak force strong force Force gravity electromagnetic weak leptons electric quarks/gluons mass/matter acts on charges quarks **10**⁻³⁸ 10^{-5} 10^{-2} rel.strength

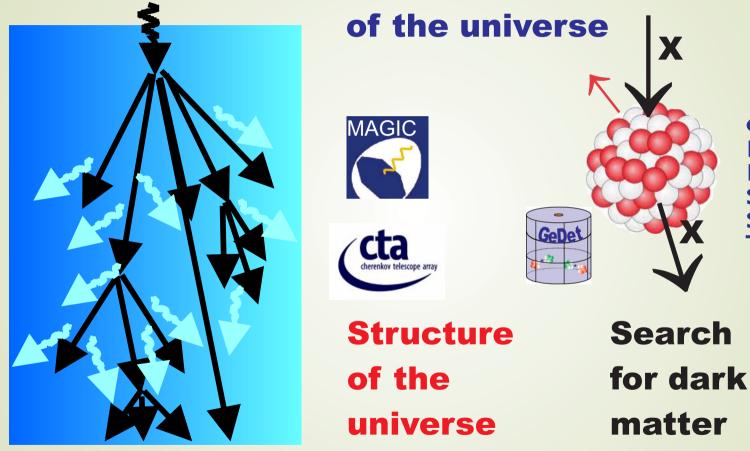
Forces are transmitted by the exchange of bosons.

electromagnetism	photon	Quantum-
week force	w+w-z	field-
strong force	gluons [8]	theories
gravity	graviton	Relativity


The Big Questions

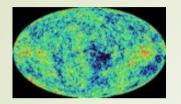
- Why are there three generations with such different masses?
- What is mass in the first place?
- What kind of particles are neutrinos?
- Why are there four forces with such different strenghts?
- What is dark matter?
- What is dark energy?

What can we contribute to the answers?


Measurement Methods

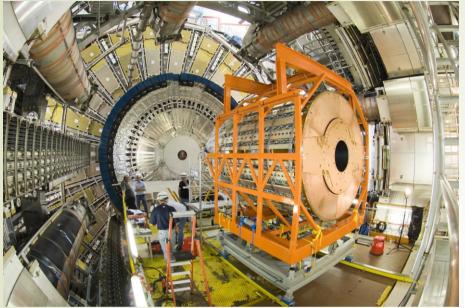
Х

CRESST


Wait for a messenger out of the depths

Structure of the universe, dark matter, neutrinos

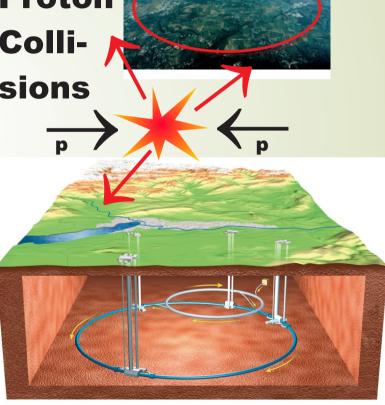
String theory Structure of matter at the smallest scale, i.e. Planck scale



Phenomenology Cross sections and other observables

The MPI and its Scientific Program, Dr. Iris Abt

ATLAS



Proton Proton Collisions

Search for Higgs and Super Symmetry

The Higgs is an excitation of the vacuum and helps to understand mass.

 $\Delta p \cdot \Delta q \ge \frac{1}{2} t$

ATLAS

Run Number: 190300, Event Number: 60554334 Date: 2011-10-04, 05:25:26 CET

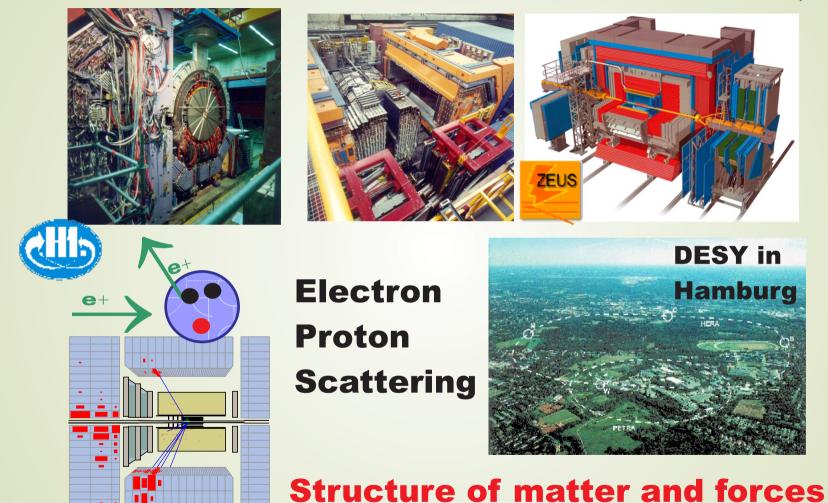
EtCut>0.3 GeV PtCut>3.0 GeV Vertex Cuts: Z direction <1cm Rnhi <1cm

Muon: blue

Cells:Tiles EMC

4 muons

The detector is gigantic and built like an onion. The collaboration has > 2500 physicists.


ATLAS The MPI was in it from day one.

The MPI and its Scientific Program, Dr. Iris Abt

H1 and ZEUS

The MPI and its Scientific Program, Dr. Iris Abt

Belle

KEK

Belle in Tsukuba, Japan

e

P Source

between matter and antimatter, questions about hierarchy of generations

Depfet-Pixeldetectors

Barrel

Calorimeter

Central

Chambe

Silicon Vertex

Detect

Pixel sense

K-long/ Muon

Drift

Barrel

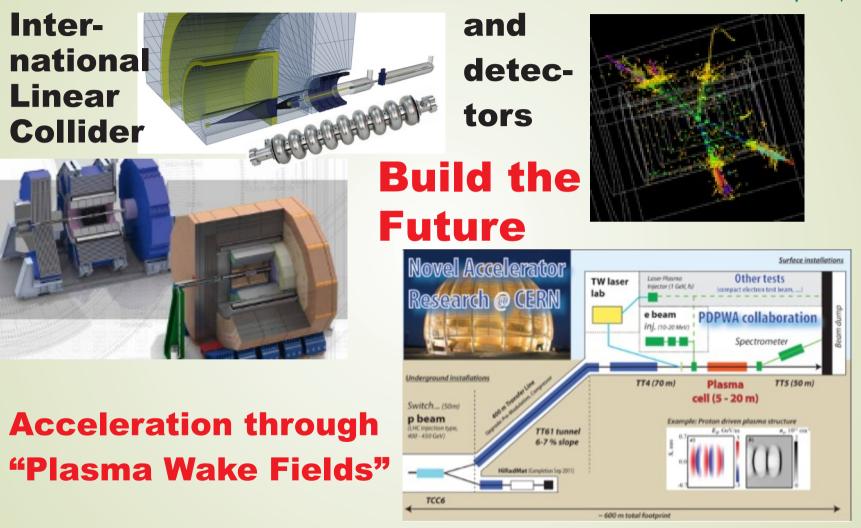
Paricle

ID device

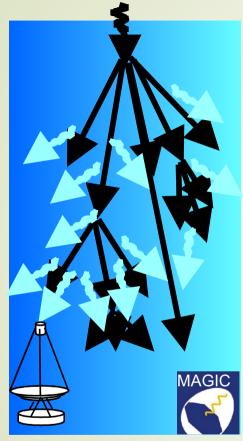
Endcap Calorimete

Endcap

Particle ID device


Computing

Accelerators



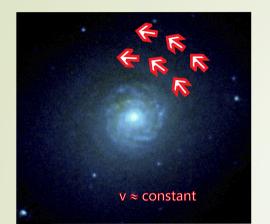


Magic and CTA

Observation of Čerenkov Lichts

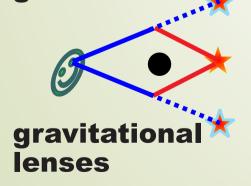
Where and how is cosmic radiation produced? Is dark matter

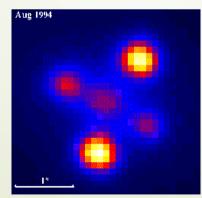
involved ?

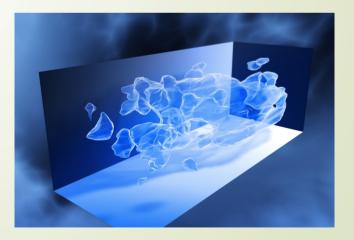


Dark Matter

Why do we believe it exists?



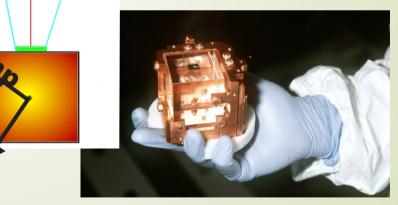



Movement of galaxies in galaxy clusters

Movement of stars at the edge of galaxies

CRESST

Cryogenic Rare Event Search with Superconducting



If the universe is full of it,

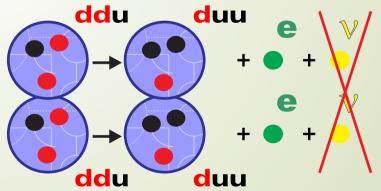
we should also find some of it on earth....

Protection against cosmic radiation



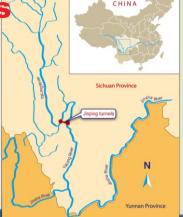


nature and mass of the neutrinos

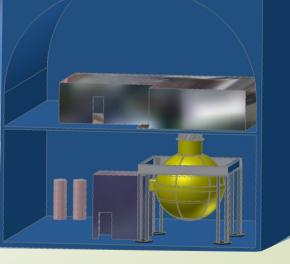


Are neutrinos their own antimatter?

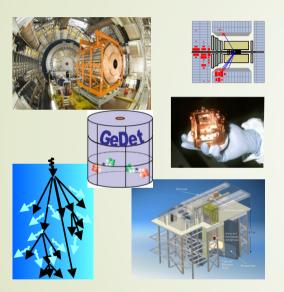
Search for neutrinoless double beta decay in germanium 76.



GeDet

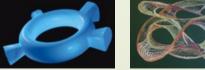


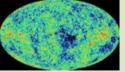
Search for neutrinoless double beta decay and dark matter.


Developement of novel germanium detectors and future large scale detectors.

The MPI and its Program

Ap. Dg>it The MPI participates in international collaborations which work to answer the big questions of experimental and theoretical physics.


- Why are there three generations with such different masses?
- What is mass in the first place?
- What kind of particles are neutrinos?
- Why are there four forces with such different strenghts?
- What is dark matter?
- What is dark energy?



We also work on the technologies of the future.

And on the thoughts that will shape the future.

