Front-End Electronics for a Ton-Scale HPGe Experiment - A User Perspective

Oliver Schulz

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらぐ

oschulz@mpp.mpg.de

Sino-German GDT Symposium, April 10th, 2013

Oliver Schulz – Front-End Electronics for Ton-Scale HPGe

Basic HPGe Readout Chain

Oliver Schulz - Front-End Electronics for Ton-Scale HPGe

Basic HPGe Readout Chain

Large scale integration should be considered from beginning

(日) (同) (日) (日)

Front end design tightly coupled to detector design

State of the Art

Component images only for illustration purposes

- Excellent discrete pre-amplifier designs available, detector can perform with near-theoretical threshold and resolution
- CDEX: Ultra-low threshold preamp (switched reset on PPC)
- MAJORANA: Ultra low-background preamp with 500 eV threshold (PPC detector, short cabling)
- Gerda: Ultra-low background preamps with long cabling, new design (GeFro) with FET/preamp separation of ~ 10 m

(日) (同) (日) (日) (日)

What do We Have to Instrument?

- \blacktriangleright Active mass \sim 1000 kg
- Multi-purpose experiment: dark matter + double-beta
 - ightarrow need excellent energy resolution and very low threshold
 - ightarrow BeGe or Point-Contact geometry, mass \sim 1 kg

What do We Have to Instrument?

- \blacktriangleright Active mass \sim 1000 kg
- Multi-purpose experiment: dark matter + double-beta \rightarrow need excellent energy resolution and very low threshold \rightarrow BeGe or Point-Contact geometry, mass $\sim 1 \text{ kg}$

(日) (四) (日) (日)

- Extreme low-background requirements and rejection of non-physics effects
 Some segmentation would help
 - \rightarrow ~ 4 electrodes / detector
- $ightarrow \sim$ 1000 detectors, \sim 4000 read-out channels

Cables are Troubles

Lessons from GERDA and others:

- Very hard to find good low-background cables
- Long cables troublesome \rightarrow noise
- Cable temperature affects calibration (1 K range)

(日) (四) (日) (日)

• Single-ended signaling troublesome \rightarrow noise

Large scale requirements

- ► Wherever possible, reduce
 - Cables
 - Component count

Large scale requirements

- Wherever possible, reduce
 - Cables
 - Component count
- Try to make signals
 - Short
 - Shielded
 - Differential
 - Digital

Ideally combinations of these

Large scale requirements

- ► Wherever possible, reduce
 - Cables
 - Component count
- Try to make signals
 - Short
 - Shielded
 - Differential
 - Digital

Ideally combinations of these

► N channels per cable instead of N cables per channel

(日) (四) (日) (日)

Oliver Schulz - Front-End Electronics for Ton-Scale HPGe

Integration / ASICS

Integration / ASICS

- Micro-scale circuits:
 - Robust against EMI
 - Little EMI emission
- Output drivers near detector \rightarrow robust signals

Integration / ASICS

- Micro-scale circuits:
 - Robust against EMI
 - Little EMI emission
- Output drivers near detector \rightarrow robust signals
- \blacktriangleright Small and light \rightarrow extremely low mass
- Radiopurity (preliminary, COBRA & others): ASICS can be clean

イロト イポト イヨト イ

User's perspective: What's the output?

Event data:

- 50 MHz to 100 MHz sampling
- 14 to 16 bit per sample
- minimum 20 us to 40 us trace per event
- \blacktriangleright \sim 4 kB / event

User's perspective: What's the output?

Event data:

- 50 MHz to 100 MHz sampling
- 14 to 16 bit per sample
- minimum 20 us to 40 us trace per event
- $\blacktriangleright\,\sim\,4~kB$ / event
- Maximum data volume: Full calibration
 - ▶ 1E6 events per detector, max. 24 h
 - $ho~\sim$ 16 TB for full array
 - data rate \sim 2 Mbit / s

Minimal cabling?

- Boundary data and low-voltage wiring
 - ▶ Probably all-copper inside: No radio-pure fiber optics / electronics available → ~ 100 Mbit/s per channel
 - ho \sim 3 diff. pairs per data channel (in, out, clock), \sim 2x supply
 - ightarrow 20 data channels ightarrow 200 long-distance data wires

Minimal cabling?

- Boundary data and low-voltage wiring
 - ▶ Probably all-copper inside: No radio-pure fiber optics / electronics available
 → ~ 100 Mbit/s per channel
 - ho \sim 3 diff. pairs per data channel (in, out, clock), \sim 2x supply

(日) (四) (日) (日)

- ightarrow 20 data channels ightarrow 200 long-distance data wires
- High voltage: Select detectors for similar properties and group them, e.g. 6 detectors per HV line

Minimal cabling?

- Boundary data and low-voltage wiring
 - ▶ Probably all-copper inside: No radio-pure fiber optics / electronics available
 → ~ 100 Mbit/s per channel
 - ho \sim 3 diff. pairs per data channel (in, out, clock), \sim 2x supply
 - ightarrow 20 data channels ightarrow 200 long-distance data wires
- High voltage: Select detectors for similar properties and group them, e.g. 6 detectors per HV line
- Comparison:
 - Current (GERDA): > 2.5 or 3 long cables / detector
 - Possible: < 0.4 long cables / detector</p>
- But how to multiplex? Need buffering!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Oliver Schulz - Front-End Electronics for Ton-Scale HPGe

Switched-Capacitor Array Sampling

- Digitization: Quantization in time and amplitude doesn't have to happen in one step
- Early quantization, at least in time

(日) (同) (日) (日)

- Digitization: Quantization in time and amplitude doesn't have to happen in one step
- Early quantization, at least in time
- Switched-capacitor array quantizes in time

- Digitization: Quantization in time and amplitude doesn't have to happen in one step
- Early quantization, at least in time
- Switched-capacitor array quantizes in time
- Read out by ADC to quantize amplitudes

イロト イポト イラト イラト

ASIC

- Switched capacitor sampling used extensively in the astro-particle community now: ANTARES, AUGER, ICECUBE, HESS-2, MAGIC, VERITAS, ...
- ► Also for multi-channel RTSDs: POLARIS (CdZnTe), ...

ASIC

- Switched capacitor sampling used extensively in the astro-particle community now: ANTARES, AUGER, ICECUBE, HESS-2, MAGIC, VERITAS, ...
- ► Also for multi-channel RTSDs: POLARIS (CdZnTe), ...
- Used in many different ASICS in production now, ADC on chip or separate

イロト イヨト イヨト イ

 $ho~\sim$ 5-50 mW per channel

Summary

- Have excellent preamps, even low-background
- Currently, painful compromises when combining low background and long cables / many channels
- ASICs may help
- Should look into early digitization

