Brief introduction to MaGe

- History
- MaGe frame
- Some features in geometry/physics
- Summary

Xiang Liu for the MaGe MC group Shanghai Jiaotong University Sino-German GDT Collaboration Symposium

Brief introduction to MaGe (very much personally biased)

- History
- MaGe frame
- Some features in geometry/physics
- Summary

Xiang Liu for the MaGe MC group
Shanghai Jiaotong University
Sino-German GDT Collaboration Symposium

TRANSACTIONS ON NUCLEAR SCIENCE (TNS)

MAGE - a GEANT4-based Monte Carlo Application Framework for Low-background Germanium Experiments

Yuen-Dat Chan¹, Melissa Boswell², Jason A. Detwiler^{1,3}, Padraic Finnerty⁴, Reyco Henning⁴, Victor M. Gehman^{2,3} Rob A. Johnson³, David V. Jordan⁵, Kareem Kazkaz^{3,6}, Markus Knapp⁷, Kevin Kröninger^{8,9}, Daniel Lenz⁸, Jing Liu⁸, Xiang Liu⁸, Sean MacMullin⁴, Michael G. Marino³, Akbar Mokhtarani¹, Luciano Pandola¹⁰, Alexis G. Schubert³, Jens Schubert⁸, Claudia Tomei^{10,11}, Oleksandr Volynets⁸

IEEE Trans. Nucl. Sci. 58:1211-1220,2011 (arXiv:1011.3827)

The Beginning of MaGe

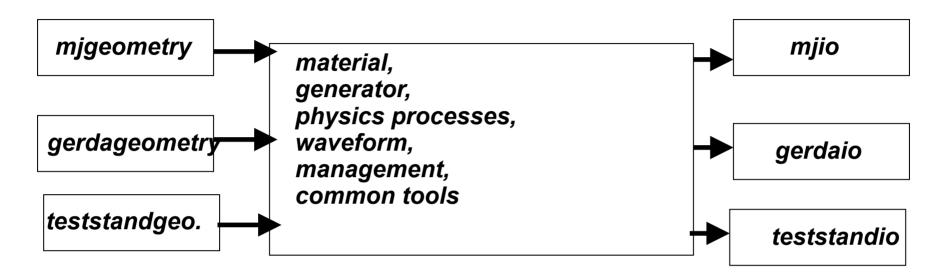
In 2004, GERDA needed common MC package urgently.

- Background simulation.
- Pulse shape.
- DAQ/Offline analysis.

	Material	Geometry	Event generator	Physics process	Output
Default	definition of normal materials and their components	whole Gerda setup, including crystal, cryogen- ics, supporting and shielding.	Geant4 particle generations with most radioactive isotopes and their decay chain	Geant4 simula- tion of particles interacting in detector and shielding materi- als	Root ntuples with energy deposit in- formation
LNGS	default	default	interface for 0ν - and 2ν - 2β de- cays from Decay0 package \star	default	generalize to other analysis tools than ROOT
Background Munich	materials for sup- porting structure	provide default Gerda setup ⋆	default	default	provide trajecto- ries and points ⋆
Test-facility Munich	default	own geometry	default	default	own output
Neutron Tübingen	default	default	provide neutron flux	study neutron in- teraction	default
³⁹ Ar Heidel- berg	special liquid ar- gon if necessary	liquid Ar cryo- genic structure	default	optical photon tracking	default
GeMPI-II Heidelberg	new material defi- nition if necessary	own geometry	default	default	own output
To be defined	default	default	default	mirror charge and pulse shape simu- lation	energy deposit as function of time

The Beginning of MaGe

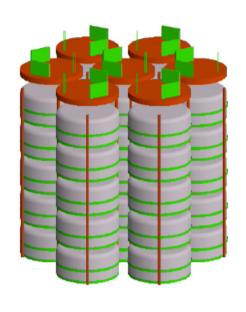
Contents

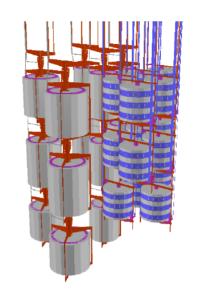

1	Introduction	3
2	Gerda MC ongoing activity	3
3	Gerda MC needs a common framework 3.1 A common framework	4
	3.2 Gerda subgroups in common framework	4 5
4	Why Majorana MC package	7
5	What is in Majorana MC package?	7
	5.1 Framework provided	7
	5.2 Geometry (geometry)	8
	5.3 Material (material)	8
	5.4 Event generator (generators)	8
	5.5 Physics process (processes)	8
	5.6 Output (io)	9
	5.7 Macro control (management)	9
	5.8 Preliminary waveform simulation (waveform)	8
	5.9 How to implement a new geometry	10
6	First version of MaGe	11
	6.1 List of work already done in MaGe	11
	6.2 Gerda geometry in MaGe	12
	6.3 One steering file	12
7	CVS and database servers	13
8	Conclusion	13

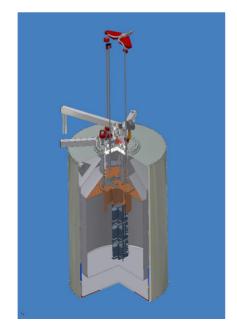
MaGe Evaluation Report

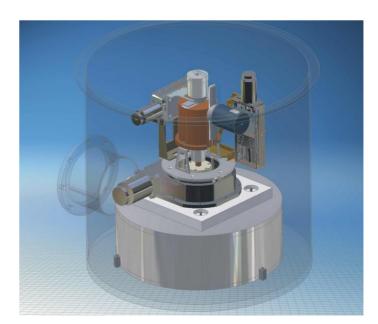
Contact: Xiang Liu, Luciano Pandola Version 0.5

November 25, 2004


MaGe Frame




- Common MC framework.


 same package for all users.
 flexible in specific simulations,
 avoid redundant coding.
- knowledge sharing physics optimization and validation.

Geometries in MaGe

Physics optimization

- Based on Geant4 for low-background experiment.
- Low energy EM models.
- Flags implemented for different hadronic models.

	$0\nu\beta\beta$ (bb)	dark-matter(dk)	Cosmic Ray	Default
γ	0.1	0.005	30 (50)	0.01(30)
$e^- e^+$	0.1	0.0005	0.04 (10.0)	0.01 (0.04)
$p \alpha$	0.1	0.1	5	0.1

Table 1.1: Range cuts as defined within MAGE in unit of mm. Values in the brackets are for range cuts within the insensitive volumes. If no brackets are shown, then the cuts within the insensitive volumes are the same as those in the sensitive volumes.

Physics validation

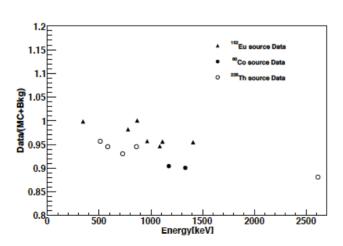
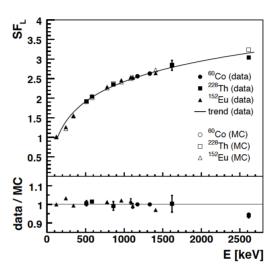



Fig. 5. Difference between number of events in characteristic photon peaks from $^{60}\mathrm{Co},~^{152}\mathrm{Eu}$ and $^{228}\mathrm{Th}$ sources plus background and a simple MAGE simulation. The maximal deviation was found to be approx. 12%.

NIM A583 (2007) 332

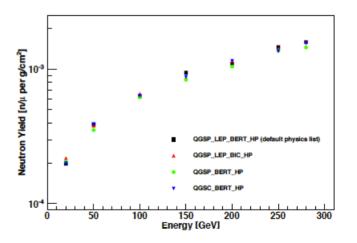
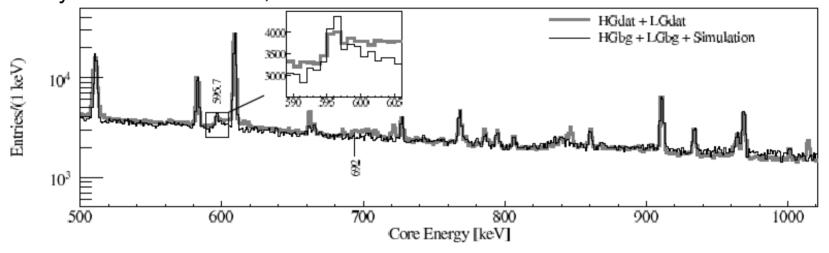
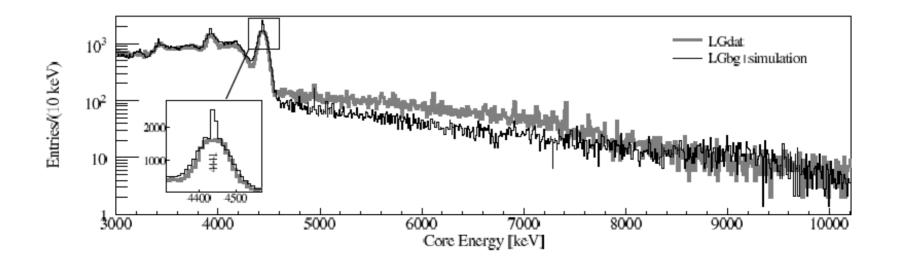




Fig. 4. Neutron yield from muon-induced showers in metallic germanium. MAGE has been run with the version 9.0 of GEANT4.

Identified Geant4 bugs

Neutron interactions as seen by a segmented germanium detector Eur. Phys. J. A36: 139-149, 2008

Summary

- MaGe used intensively by Majorana/GERDA
 Radioactive background simulation
 Pusle shape simulation
 Offline analysis tools and detector database
- Team work in coding/optimizing/validating geometry physics processes event generator general io

Try it!

Support materials

User and developer's Documents

https://github.com/mppmu/MaGe

http://mjwiki.npl.washington.edu/bin/view/MaGe/WebHome