Segmented Broad Energy Germanium Detectors

Burçin Dönmez for the GeDET Collaboration

Max-Planck-Institut für Physik, München

Motivation

Development of segmented Germanium detectors for future low background applications, such as $0\nu\beta\beta$ experiments.

One ton initiative:

- Increase mass to increase sensitivity
- Reduce background index
- Use intelligent detectors

Can we improve current detector geometries?

Segmentation of germanium detectors are very useful for extracting event topologies.

True-coaxial segmented

Can we improve current detector geometries?

Segmentation of germanium detectors are very useful for extracting event topologies.

True-coaxial segmented

Segmented BEGe

Low capacitance

- → Lower threshold
- → Better energy resolution

Non-segmented BEGe detectors

BEGe detectors have special field distributions due to their contact geometry.

 \rightarrow Improved PSA capabilities.

Point contact pulse

Degeneracy in r and ϕ coordinate.

Segmented BEGe detectors

Example: Event located at r=20 mm, $\phi=30^{\circ}$, z=20 mm.

Charge carrier drift.

Pulse waveforms for each electrode.

BEGe's - General design

- 1 Detector dimensions.
 Height is 40 mm,
 diameter is 75 mm and
 point contact diameter
 is 15 mm.
- 2 n-type detector.
- 3 Detector bias is 4500 V.
- 4 Linear Impurity density. $0.7 \times 10^{10} cm^{-3}$ (bottom) and $1.5 \times 10^{10} cm^{-3}$ (top).

Electrode design and field calculations are done in Maxwell.

Pulse shape analysis performed in MaGe.

Design Evolution

Several designs are considered.

Final design after discussions with CANBERRA

- 1 Detector dimensions are the same.
- No groove.
- 3 Segment width is 40 mm
- Gap between segments and mantle is $700\mu m$.
- 5 Length of the segment on top is 18 mm and on bottom is 30 mm.

Pulse shapes

- 1 z from 5 mm to 35 mm in 5 mm steps.
- $\mathbf{2}$ r from 0 mm to 36 mm in 4 mm steps.
- $\phi = 60^{\circ}$.

Pulse shapes

For segment signals most important parameters are

- 1 amplitude
- time over threshold

Pulse Shapes

Segment 1 time over threshold

Time over threshold for segment 1 in x-y for $z=5\mathrm{mm}$ (left) and $z=35\mathrm{mm}$ (right).

Segment 1 time over threshold

Time over threshold for segment 1 in r-z for $\phi=0^\circ$ (left) and $\phi=60^\circ$ (right).

Segment sum time over threshold

Time over threshold for segment sum in x-y for $z=5\mathrm{mm}$ (left) and $z=35\mathrm{mm}$ (right).

Segment sum time over threshold

Time over threshold for segment sum in r-z for $\phi=0^\circ$ (left) and $\phi=60^\circ$ (right).

Summary

- Designed a novel detector geometry for future germanium detectors.
- First prototype will look like a radiation sign (1/2 of surface is segments).
- Currently developing pulse shape analysis tools to study event topologies.

