Symposium of the Sino-German GDT cooperation 07-13 April 2013 Tubingen

Conventional Test-stands at MPI

Lucia Garbini Max-Planck-Institut für Physik GeDet collaboration

→ Introduction

- two different kinds of test stand

\rightarrow commercial detectors: REGe and XtRA

- apparatus description
- results

\rightarrow test stand for detector prototype: K1

- apparatus description
- results

→ Conclusions

Two different kinds of test stand

1) Commercial detectors: REGes and XtRa

- general tests

- background monitoring
- material screening
- equipment tests
 - collimator test
- analysis tests
 - data analysis chain
 - simulation chain

2) Test facility: K1

- characterize prototype detectors
- study all kinds of properties
 - T dependence of pulse lengths
 - axes orientation
 - test of PSS and PSA
 - response to neutrons (J. Liu talk)

- REGe = Reverse Electrode Coaxial
 Ge detectors
- Mantle: **p-contact**, core: **n-contact**
- Thin ion implanted contacts
- Spectroscopy from 10 keV to >10 MeV
- Excellent Energy Resolution

- XtRa = Extended Range Coaxial Ge Detectors
- Mantle: n-contact, core: p-contact
- Carbon composite cryostat window
- Spectroscopy from 3 keV to >10 MeV
- Excellent Energy Resolution
- Lead castle for weak sources

XtRa results: screening tests (I)

XtRa results: equipment test (I)

Goals: → Test the collimator for GALATEA (S. Irlbeck talk) → Scan a commercial detector

Scanning XtRa with:

- ¹⁵²Eu → gamma source (v, h, c scan) - ⁹⁰Sr → beta source (h scan)

Example:

152 Eu vertical scan

- pulses from the 122keV peak
- two different methods to extract the rise time
 - Min-Max method
 - Fitting method

RISE TIME DEPENDENT ON THE RADIUS

Closed ended coaxial geometry!

K1: experimental setup

- Cooling finger to a standard LN2 dewar
- Siegfried-II: 18-fold n-type detector High Purity

- Two-walled aluminum
 vacuum can
- Copper "ears" housing pre-amplifier boards

Temperature of the detector increases with time

- possible studies on **temperature-dependent parameters**

Latest results

Temperature dependence of pulse lengths Eur. Phys. J. C 72 (2012) 1950
 Crystallographic axis determination Eur. Phys. J. Appl. Phys. 56 (2011) 10104

K1 results: temperature dependence of pulse lengths (I)

Δ_{p} . $\Delta_{g} \ge \pm t$

Theoretical model

 \rightarrow the velocity of charge carriers depends on mobility and electric field

$$\mathbf{v}_{e/h}(\mathbf{x}) = \mu_{e/h}(\mathbf{x})\mathbf{E}(\mathbf{x}) \qquad \qquad \mu_e \propto T^{-\frac{3}{2}}$$

 \rightarrow the rise time of the pulse should depend on the TEMPERATURE

$$t(r_1,T) = 0.63 \cdot T^{rac{3}{2}} \;\; [ns]$$

Pulses \rightarrow **rise time** \rightarrow **temperature dependence**

Data collection: - measure along: - <110> "slow" axis - <100> "fast" axis - use the 122keV gamma line from ¹⁵²Eu

2000

Time [ns]

10

Rise time extraction - measured pulses fitted with simulated pulses to suppress influence of noise

Two different methods were used:

- A) Scan Method
- **B) Occupancy Method**

A) Scan method

Velocity and trajectories depends on the relative angle of the source and the axis \rightarrow The rise time depends on the source azimuth angle!

- can be used even with not segmented detector
- data taking is time consuming

B) Occupancy Method

Comparing measured occupancies with simulated occupancies where the axes orientation is one of the simulation parameters

Use high energy gammas from ⁶⁰Co or ²²⁸Th

- evaluate the occupancies from the measured spectra $=> D_i$
- evaluate the occupancies from the simulated spectra $=> Mc_i$
- minimize a statistic test
 to extract the axes orientation

$$\epsilon = \sum_{i=1}^{6} \frac{(D_i - MC_i)^2}{D_i^2}$$

An Agzit

Summary:

- REGes:
 - monitored the radioactive background since Fukushima disaster
- XtRa:
 - measured the **potassium content for 13 different food samples**
 - characterize the detector with gamma and beta sources

- **K1**:

- all our papers came out of this test stand
- studied temperature dependence of pulse lengths
- determined crystallographic axes orientation with a NEW method

Outlook:

- K1 will be the first test facility for the new Segmented BEGe prototype
- a good idea would be to have a second K1

Backup Slides

Activity = number of decays per second

- from the **exponential decay law**: if we have initially N₀ radioisotopes $D(t) = N_0 - N(t) = N_0 \left(1 - e^{-\frac{t}{\tau}}\right)$

is the number of decays after a time t

- if we use the half life $t_{1/2}$ and expand in **Taylor series** we can obtain

$$e^{-rac{t}{ au}} = 1 - rac{t}{ au} = 1 - rac{t \cdot ln2}{t_{rac{1}{2}}}$$

- if we have a certain mass of a radioactive isotope m

$$A = \frac{D(t)}{t} = \left(\frac{m_I}{m_I^A} \cdot N_A\right) \cdot \frac{\ln 2}{t_{\frac{1}{2}}}$$

For a Potassium Chloride (KCl) sample :

- of mass $m_{\kappa cl}$
- with a cenrtain amount of impurities i_{tot} we will have:

$$m_{^{40}K} = m_{KCl} \cdot (1 - i_{tot}) \cdot m_K^{KCl} \cdot a_{^{40}K}$$

$$A_{1460} = 141.9 \ Bq$$

Activity = number of decays per second

Directly from the exponential decay law for N_0 radioisotopes:

$$A = \frac{D(t)}{t} = N_0 \cdot \frac{\ln 2}{t_{\frac{1}{2}}}$$

if we have some amount m_{μ} of radioisotope it will be:

$$A = \frac{D(t)}{t} = \left(\frac{m_I}{m_I^A} \cdot N_A\right) \cdot \frac{\ln 2}{t_{\frac{1}{2}}}$$

Potassium Chloride calibration salt

- mass of the salt sample
- impurities
- mass of Potassium in KCl
- isotopic abundance for ⁴⁰K
- atomic mass of ⁴⁰K

$$m_{40K} = m_{KCl} \cdot (1 - i_{tot}) \cdot m_K^{KCl} \cdot a_{40K}$$

$$A_{1460} = 141.9 \ Bq$$

Experimental Setup: Background reduction

- 100 g of strawberry => 153 mg of K => 0.018 mg of $^{40}K \rightarrow WEAK$ SOURCE $\mathcal{I}_{\mathcal{A}_{f}, \mathcal{A}_{f} \geq \frac{1}{2}}$

- from this weak source in 1 hour \rightarrow **20 counts**
- from the bkg radiation in 1 hour $\rightarrow~1000~counts$

Natural radioactive background: reduction due to lead castle

SHIELD!!!

Calibrate the **detector response** with a **WELL KNOWN** quantity of $\mathcal{R}^{\Delta_p,\Delta_q \ge \frac{1}{2}}$

Known mass of K : Spectrum_A = unknown mass of K : Spectrum_B

Define the experimental settings:

- 1) position of the plastic container:
 - vertical
 - horizontal

2) relative distance between source and detector

MAXIMIZING THE GEOMETRICAL ACCEPTANCE, af

Where:

 $N_{measured}$ $N_{emitted}$

are obtained directly f**rom the measured spectrum** can be **calculated from the activity** of the sample

Experimental Setup: Detector Calibration (II)

Potassium Chloride spectra in horizontal and vertical position

ONCE CALIBRATED...

Known mass of K : Spectrum_{KCI} = unknown mass of K : Spectrum_F

To be compared to the expected Potassium content USDA National Nutrient Database for Std. Ref., Release 17

