Digital Pulse Processing of Semiconductor Detector Signals

Institute for Nuclear Physics, University of Cologne

Symposium of the Sino-German GDT Cooperation
April 2013, Tübingen

Supported by the DFG under contract ZI 510/4-2, the BMBF under contract (06KY9136) and the Bonn-Cologne Graduate School of Physics and Astronomy
Outline

- Motivation of digital pulse processing
- The DGF-4C module
- Results with HPGe and Silicon detectors
- Summary
The HORUS spectrometer

The HORUS spectrometer at the University of Cologne:
- 14 HPGe detectors for high resolution γ spectroscopy
- BGO shields
- Absolute efficiency of up to 5% at 1.33 MeV

The SONIC array:
- 8 ΔE-E sandwich silicon detectors for charged particle spectroscopy
- Particle identification
- Solid angle coverage of 4%
The HORUS spectrometer

The HORUS spectrometer at the University of Cologne:
- 14 HPGe detectors for high resolution γ spectroscopy
- BGO shields
- Absolute efficiency of up to 5% at 1.33 MeV

The SONIC array:
- 8 ΔE-E sandwich silicon detectors for charged particle spectroscopy
- Particle identification
- Solid angle coverage of 4%
<table>
<thead>
<tr>
<th>Analog signal processing</th>
<th>Digital signal processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtering of signals in different modules to obtain spectroscopic quantities</td>
<td>Sampling of the signal in the MHz regime provides all spectroscopic information</td>
</tr>
<tr>
<td>Pulse shape analysis hard to implement</td>
<td>Pulse shape analysis can be easily implemented</td>
</tr>
<tr>
<td>Noise important at all stages</td>
<td>Noise important only before sampling</td>
</tr>
<tr>
<td>Highly specialized electronics</td>
<td>Commonly used components (consumer electronics)</td>
</tr>
<tr>
<td>Optimized in ≈ 50 years of use</td>
<td></td>
</tr>
</tbody>
</table>
Sampling of the preamplifier signal at a rate of 10’s of MHz
- Sampling of the preamplifier signal at a rate of 10’s of MHz
- Online signal processing using a combination of FPGA and DSP
• Sampling of the preamplifier signal at a rate of 10’s of MHz

• Online signal processing using a combination of FPGA and DSP
Trapezoidal filter algorithm

- Slow filter: Energy determination → filter amplitude
- Fast filter: Time determination → leading edge trigger
 Trigger to select events of interest (e.g. Pile-up rejection)
The Digital Gamma Finder (DGF-4C) \cite{1,2}

- **Revision F modules**
 - cost: about 7000 €

- **Pipeline ADC**: digitizing
 - sampling rate 80 MHz
 - depth: 14 bit

- **FPGA**: filter algorithms
 - signal shaping and
 - pile-up rejection

- **DSP**: signal processing
 - determination of energy
 - and time of the signal

- Readout of the data via USB in event-by-event mode

The Digital Gamma Finder (DGF-4C) [1]

- **Pipeline ADC:** digitizing
 - sampling rate 80 MHz
 - depth: 14 bit

- **FPGA:** filter algorithms
 - signal shaping and
 - pile-up rejection

- **DSP:** signal processing
 - determination of energy
 - and time of the signal

- Readout of the data via USB in event-by-event mode

Results - energy resolution

Test with 80% (*) HPGe detectors:

Test with 80% (*) HPGe detectors:

(*) Relative to 3 x 3 inch cylindrical NaI detector
Energy resolution is slightly worsened due to beam-induced noise and higher count rate.

(*) Relative to 3 x 3 inch cylindrical NaI detector.
Offbeam test:

- Energy resolution measured with triple-α calibration source:
 \[\Delta E \ (5486 \text{ keV}): \ 12.00(8) \text{ keV} \]
Offbeam test:

- Energy resolution measured with triple-α calibration source:

 \[\Delta E \ (5486 \text{ keV}): \ 12.00(8) \text{ keV} \]
Results – timing resolution

- Time determination in DGF-4C: leading edge trigger

 Amplitude and risetime-walk effect worsens the timing resolution

![Diagram showing time vs. amplitude with different amplitudes and risetimes.]
Results – timing resolution

- Time determination in DGF-4C: leading edge trigger

 Amplitude and risetime-walk effect worsens the timing resolution

![Graph showing time vs. amplitude with different amplitudes and time resolution effects highlighted.]
Results – timing resolution

- Time determination in DGF-4C: leading edge trigger

 Amplitude and risetime-walk effect worsens the timing resolution

![Graph showing time determination and amplitude and risetime-walk effect](image_url)
Correction for amplitude walk:

Results – timing resolution
Correction for amplitude walk:

- Histogram showing counts per 12.5 ns, with two curves: no correction and walk-corrected.

- Heatmap showing energy [keV] vs. timing correction ΔT [ns].
Results – Timing Resolution

Correction for amplitude walk:

- Timing resolution in coincidence with 1173 keV: $\Delta T \approx 30$ ns
- Improvements with a digital constant fraction algorithm planned [1]

Deadtime contribution in the DGF’s

Events not processed in the DGF

→ Average values, obtained with 226Ra calibration source

- Pile-up rejection in the FPGA
 - Depends on count rate and filter length:
 \[R_{out} = R_{in} \cdot \exp(-2T_{F} \cdot R_{in}) \]
 with T_{F}: filter length

14 detectors at 9.6 kHz (av.) / ch.

- DSP deadtime
 - DSP blocked by signal processing

 9.9 %

- Readout deadtime
 - Readout of data from DGF-4C to EM/host

 6.3 %

Fraction of events lost per channel in the DGF: 28.8 %
External gating conditions

Applications:
- pulsed beam
 → “beam-on” condition
- $\gamma\gamma$-coincidence experiments
 → multiplicity filter

Advantages:
- reduced background
- reduced deadtime
 → less data to process for DSP
 → less data to readout

- DGF-4C modules: late event validation via GFLT input

- $\gamma\gamma$-coincidence experiment: number of detected events increased by 30%
Summary

- Digital signal processing yields various benefits compared to analog spectroscopy
 → Easy PSA, low-cost, less bulky setup,

- DGF-4C modules for readout of HORUS and SONIC
 → Processing Silicon and Germanium detector signals
 → Channel specific VETO input for BGO suppression
 → Good energy and time resolution
 → Reduced deadtime compared to analog systems

Thanks to:
Advantages of Digital Data Acquisition

- Cost and space saving
- Preamplifier signal is sampled right away
 - Reduction of signal instabilities
 - Conservation of signal quality
- Reduced deadtime
 - Processing of higher countrates
- Comparable energy and timing resolution for Silicon and HPGe detectors

Digital data acquisition with DGF-4C modules
Contributions to deadtime - analog:

- Spectroscopy amplifier
 - Pile-up rejection
- ADC
 - Comparison to reference ladder
- Data acquisition
 - Blocked by inhibit logic

Examples:

- one HPGe at 10 kHz: 10 – 25 %
- one HPGe at 10 kHz: 11%
- 20 % at 15 kHz master trigger rate*
- 51 % at 5 kHz master trigger rate**

Total: 41-56 % events lost

* measured with a 14 HPGe detector array at the HORUS spectrometer

** measured with a 8 HPGe detector array at KVI Groningen
Energy Resolution – τ Correction

- Time constant τ most important for good energy resolution
- Adjust τ parameter to get best peak shape and resolution

Count rate = 20 kHz

courtesy of N. Warr
Timing Properties

- Time determination in DGF module: *leading edge trigger*

- Amplitude walk: Depending on the energy deposited in the crystal

 ![Amplitude Walk Diagram]

- Risetime walk: Depending on the interaction point in the crystal

 ![Risetime Walk Diagram]

- Improvement of timing resolution with a digital constant fraction algorithm planned [1]

 ![Histogram Graph]

\[\Delta T = 52.5 \pm 2.1 \text{ ns} \]

Treatment of Random Coincidences

Timedifference spectrum between two detectors:

- Create peak and background matrices
- Final matrix: difference of peak and background matrix
Active Compton Suppression

Four veto channels for Compton suppression

Reduction factor: 3.358 (10)

Counts / 0.5keV

energy [keV]
Energy Resolution – Analog vs. Digital

![Graph showing energy resolution comparison between analog and digital signals. The x-axis represents detector number, and the y-axis shows energy resolution (ΔE) and ΔE_{ani} - ΔE_{digi} in keV. The graph includes data points for ΔE analog, offbeam, R_{in}=1.2 - 3.6 keV and ΔE digital, offbeam, R_{in}=1.2 - 3.6 keV.](image)
External Trigger Conditions

Late event validation using the GFLT

DGF 1 → Mult-out signal → Linear FIFO → Discriminator → Gate Generator

Input 1

DGF 2 → Mult-out signal

Input 1

V

n ≥ 2

n=2

n=1

trigger level

t

A. Hennig, IKP, University of Cologne, AG Zilges Digital Pulse Processing of Semiconductor Detector Signals
Late event validation using the GFLT

- Input 1
 - DGF 1
 - Mult-out signal
 - Gate signal to trigger input
 - Linear FIFO
 - Discriminator
 - Gate Generator
 - n ≥ 2

- Input 1
 - DGF 2
 - Mult-out signal
 - Gate signal to trigger input

Readout deadtime reduced to 0.9%
The $^{124}\text{Sn}(^{13}\text{C},3n)^{134}\text{Ba}$ Experiment
γγ-Coincidence Experiment

Reaction: $^{124}\text{Sn}(^{13}\text{C},xn)^{137-x}\text{Ba}$

- Use of 13 HPGe detectors
- Production of well studied nuclei ^{133}Ba [1,2] and ^{134}Ba [3,4]
- Beam energy: 46 MeV, calculation with CASCADE

Aim of the test experiment:

- Acquisition of $\gamma\gamma$ coincidences
- Investigation of energy and timing resolution
- Reproduction of angular correlations of coincident γ-rays

Angular Correlations

Angular distribution of γ-ray emission from an aligned nucleus:

$$W(\theta_1, \theta_2, \phi) = \sum_{k,k_1,k_2} B_{k_1} (I_{1}) A_{k}^{k_1,k_2} (\gamma_{1}) A_{k_2} (\gamma_{2}) H_{k_1,k_2} (\theta_1, \theta_2, \phi)$$

- Sorting of detector pairs in 17 correlation groups that share the same angles ϕ, θ_1, θ_2
- Fit of $W(\theta_1, \theta_2, \phi)$ to intensities in correlation groups
Test of the Data Acquisition

Reaction: $^{124}\text{Sn}(^{13}\text{C},4n)^{133}\text{Ba}$
- Beam energy: 46 MeV
- Beam current: 10 pnA
- HPGe count rates: 5 - 14 kHz
- ΔE_{FWHM}: 1.9 to 2.4 keV
Angular Correlations in 134Ba

$\gamma\gamma$ Angular Correlations in 134Ba

134Ba

A. Hennig, IKP, University of Cologne, AG Zilges

Digital Pulse Processing of Semiconductor Detector Signals
Angular Correlations in ^{134}Ba

$\gamma \gamma$ Angular Correlations in ^{134}Ba

1. $1400\text{ keV} \rightarrow 605\text{ keV} \rightarrow 0\text{ keV}, E_\gamma = 796/605\text{ keV}$
 - Experiment: $4 \rightarrow 2 \rightarrow 0$, $\delta_1=0.011\pm0.056$, $\delta_2=0$, $\chi^2=4.6$

2. $2211\text{ keV} \rightarrow 1400\text{ keV} \rightarrow 605\text{ keV}, E_\gamma = 811/796\text{ keV}$
 - Experiment: $6 \rightarrow 4 \rightarrow 2$, $\delta_1=0.002\pm0.061$, $\delta_2=0$, $\chi^2=3.7$

3. $1986\text{ keV} \rightarrow 1400\text{ keV} \rightarrow 605\text{ keV}, E_\gamma = 585/796\text{ keV}$
 - Experiment: $5 \rightarrow 4 \rightarrow 2$, $\delta_1=0.011\pm0.048$, $\delta_2=0$, $\chi^2=5.7$
 - Experiment: $6 \rightarrow 4 \rightarrow 2$, $\delta_1=0$, $\delta_2=0$, $\chi^2=20.0$
 - Experiment: $4 \rightarrow 4 \rightarrow 2$, $\delta_1=0.758\pm0.187$, $\delta_2=0$, $\chi^2=12.9$
Angular Correlations in ^{133}Ba

$1859 \text{ keV} \rightarrow 969 \text{ keV} \rightarrow 228 \text{ keV}, E_\gamma = 890/680 \text{ keV}$

Experiment

$19/2^+ \rightarrow 15/2^+ \rightarrow 11/2^-, \delta_1=0.049 \pm 0.049, \delta_2=0, \chi^2=6.1$

Energy Levels:

- ^{133}Ba
- $1859 \rightarrow 19/2^-$
- $1712 \rightarrow 17/2^-$
- $969 \rightarrow 15/2^-$
- $680 \rightarrow 13/2^-$
- $288 \rightarrow 11/2^-$
- $627 \rightarrow 15/2^-$
- $642 \rightarrow 19/2^-$
- $338 \rightarrow 21/2^-$
Angular Correlations in 133Ba

$\gamma\gamma$ Angular Correlations in 133Ba

1859 keV → 969 keV → 228 keV, $E_\gamma = 890/680$ keV

- Experiment
- $19/2^-\rightarrow 15/2^-\rightarrow 11/2^-$, $\delta_1=0.049\pm0.049$, $\delta_2=0$, $\chi^2=6.1$

2509 keV → 2170 keV → 1529 keV, $E_\gamma = 338/642$ keV

- Experiment
- $21/2^-\rightarrow 19/2^-\rightarrow 15/2^-$, $\delta_1=-0.105\pm0.034$, $\delta_2=0$, $\chi^2=4.6$

1712 keV → 969 keV → 228 keV, $E_\gamma = 743/680$ keV

- Experiment
- $17/2^-\rightarrow 15/2^-\rightarrow 11/2^-$, $\delta_1=-0.492\pm0.053$, $\delta_2=0$, $\chi^2=3.1$
Reaction: $^{124}\text{Sn}(^{13}\text{C},4\text{n})^{133}\text{Ba}$

- Beam energy: 46 MeV
- Beam current: 10 pnA
- HPGe count rates: 5 - 14 kHz
- ΔE_{FWHM}: 1.9 to 2.4 keV
Correction for Solid Angle Coverage

Neglecting the extension of the source: \(A_{kk} = \frac{A_{kk}^{\text{exp}}}{Q_{kk}} \)

- Attenuation factors \(Q_{kk} = Q_k(1) \cdot Q_k(2) \) with \(Q_k(i) = \frac{J_k(i)}{J_0(i)} \)

\[
J_k(i) = \int_0^{1/2\pi} \varepsilon_i(E, \alpha) \cdot P_k(\cos \alpha) \left| \sin \alpha \right| d\alpha
\]

J. S. Lawson and H. Frauenfelder, Phys. Rev. 91 (11953) 649
Correction for Solid Angle Coverage

- Effect of solid angle correction with statistical error bars
- Minor changes in determined multipole mixing ratios
The $^{140}\text{Ce}(p,p'\gamma)$ Experiment
Particle-γ Coincidence Experiment

- Coincident detection of scattered proton and deexciting γ ray
- Particle detector array SONIC embedded into HORUS spectrometer

Reaction: 140Ce(p,p'γ)

- Beam energy: $E_p = 10.4$ MeV
- Beam current: $I_p = 0.5$ pnA

\[
E_x \approx E_p - E_{p'}
\]

- Silicon detector
- HPGe detector

A. Hennig, IKP, University of Cologne, AG Zilges
Digital Pulse Processing of Semiconductor Detector Signals
Excitation spectrum in ^{140}Ce

- 2^+_1
- $12\text{C}(2^+_1)$
- $16\text{O}(0^+_2, 3^-_1)$

Counts / 2 keV

$E_x \approx E_p - E_p^*$ [keV]
Decay of Two-Phonon State in 140Ce

- Two-phonon 1$^-$ state in 140Ce:

$$ (2^+ \otimes 3^-)^{1^-} $$

Diagram:

- E_x
- $3643
ightarrow 2051
ightarrow 1592
ightarrow 3643$
- $1592
ightarrow 2^+$
- $3643
ightarrow 1592
ightarrow 0^+$

Graph:

- Projected γ-spectrum
- Energy [keV]
- Counts / 2 keV
Decay of two-phonon state in ^{140}Ce

- Two-phonon 1^- state in ^{140}Ce:

 $E_x \approx E_p - E_{p'}$

 E_p

 $E_{p'}$

 E_{γ}

 $3643 \rightarrow (2^+ \otimes 3^-)^{1^-}$

 $1592 \rightarrow 2^+$

 $2051 \rightarrow 0^+$

 $3643 \rightarrow 1592 \rightarrow 0^+$

 3643

 1592

 2051

 0

 0^+

 E_{x}

 $1^{-} \rightarrow 0^{+}$

 $1^{-} \rightarrow 2^{+}$

 $\text{projected } \gamma\text{-spectrum}$

 $\text{gate on } E_{x} = 3643 \text{ keV}$

A. Hennig, IKP, University of Cologne, AG Zilges

Digital Pulse Processing of Semiconductor Detector Signals
The sorting code SOCO
Evaluation software for double coincidence listmode data

Features:

- Use of multiprocessing

SOorting code COlogne (SOCO) [1]

- Evaluation software for double coincidence listmode data

Features:

- Use of multiprocessing

- Provides matrices, single spectra and projections, as well as time-difference spectra

- Support of different listmode formats:
 - **FERA** *(old cologne data format)*
 - **XIA** *(data format for the new digital data acquisition)*
 - **GASP** *(INFN Legnaro, IFIN-HH Bucharest)*

\[S = S_2 - S_1 = 0 \]

\[L V_{x,k} = - \sum_{i=k-2L+G+1}^{k-L-G} V_i + \sum_{i=k-L+1}^{k} V_i \]
Trapezoidal filter algorithm

\[S = S_2 - S_1 = 0 \]

\[LV_{x,k} = - \sum_{i=k-2L-G+1}^{k-L-G} V_i + \sum_{i=k-L+1}^{k} V_i \]
Trapezoidal filter algorithm

\[S = S_2 - S_1 = 0 \]

\[L V_{x,k} = - \sum_{i=k-2L-G+1}^{k-L-G} V_i + \sum_{i=k-L+1}^{k} V_i \]
Trapezoidal filter algorithm

\[S = S_2 - S_1 = 1 \]

\[LV_{x,k} = - \sum_{i=k-2L-G+1}^{k-L-G} V_i + \sum_{i=k-L+1}^{k} V_i \]
Trapezoidal filter algorithm

\[S = S_2 - S_1 = 2 \]

\[LV_{x,k} = - \sum_{i=k-2L-G+1}^{k-L-G} V_i + \sum_{i=k-L+1}^{k} V_i \]
\[S = S_2 - S_1 = 3 \]

\[LV_{x,k} = -\sum_{i=k-2L-G+1}^{k-L-G} V_i + \sum_{i=k-L+1}^{k} V_i \]
$S = S_2 - S_1 = 4$

$$LV_{x,k} = - \sum_{i=k-2L-G+1}^{k-L-G} V_i + \sum_{i=k-L+1}^{k} V_i$$
\[S = S_2 - S_1 = 5 \]

\[LV_{x,k} = - \sum_{i=k-2L-G+1}^{k-L-G} V_i + \sum_{i=k-L+1}^{k} V_i \]
Trapezoidal filter algorithm

\[S = S_2 - S_1 = 5 \]

\[LV_{x,k} = - \sum_{i=k-2L-G+1}^{k-L-G} V_i + \sum_{i=k-L+1}^{k} V_i \]
Trapezoidal filter algorithm

\[S = S_2 - S_1 = 5 \]

\[\sum_{i=k-L-G+1}^{k-L+1} V_i - \sum_{i=k-L+1}^{k} V_i \]
\[S = S_2 - S_1 = 5 \]

\[LV_{x,k} = - \sum_{i=k-2L-G+1}^{k-L-G} V_i + \sum_{i=k-L+1}^{k} V_i \]
\[\text{S} = S_2 - S_1 = 0 \]

\[\sum_{i=k-L-G+1}^{k} V_i + \sum_{i=k-L+1}^{k} V_i \]

Trapezoidal filter algorithm