

PXD9 Production Status

Results of Test Project ZMI5 (triple metal system)

PXD6 Status for DESY Testbeam

R. H. Richter for the MPG Semiconductor Lab.

13. Intern. Workshop on DEPFET Detectors and Applications, Ringberg, June 2013

Progress Table Mask Steps

SOI and alignment	Poly and implants	Contacts and Metallization	Thinning and Cutting
Masks	Masks	Masks	Masks
Alib Poxp Alip Alin	Po1n Pshn Pdpn Nd1n Noxn Po2n Ps0n Poxn	Nitn Co1n Al1n Freckn Co2n Al2n Co3n Cu1n Bcbn	Winp (Conp) (Alup) Cutn Cutp

in total 23 mask steps

PXD9-2 12 wafer - waits for metal design validation (EMCM results)
PXD9-3A 8 wafer
PXD9-3B 8 wafer

Reminder: 1 wafer contains: 1 inner forward half module and 1 inner backward half module -> 28 (8) 2 outer forward half module and 2 outer backward half module -> 56 (12)

Changes of the implantation sequence

Cross Section

weaker potential barriers lead to noisy/bright pixel

Change od process sequence

Old process sequence

- Deep P Implantation through nitride and poly relicts ⊗
- Poly oxidation (relicts are oxidized)
- Short oxide etch (removes oxidized poly)
- Nitride etch
- N+ Clear implantation through a much cleaner surface

New process sequence

- Poly oxidation (relicts are oxidized)
- Short oxide etch (removes oxidized poly)
- Nitride etch
- Deep P Implantation through nitride
- N+ Clear implantation

Both through a cleaner surface ©

Same procedure for the shallow p channel implantation (shifts threshold voltage to 0V)

Adaption of the implantation parameters necessary !

Surface after Nitride etching

Crucial technology part: metallization

not yet done

But we learned some lessons

(copper technology -> Laci's talk)

Yield improvement - hillock suppression with AI_2O_3

13. Intern. Workshop on DEPFET Detectors and Applications, Ringberg, June 2013

Rainer Richter MPG-HLL

2µm

Al

 Al_2O_3

Hillock

Test project ZMI 5 - Yield Optimization

Technology:

Only contact and metal system and one poly layer (topology)

Structures:

- 2 EMCMs
- 2 'inner modules'

- Many simple yield structures of relevant size

'Simple' in order to clearly distinguish fault mechanisms

ZMI5 test structures (i)

Meandered metal lines climbing over crossing lines Check for interrupts (opens)

13. Intern. Workshop on DEPFET Detectors and Applications, Ringberg, June 2013

ZMI5 test structures (ii)

Interleaved combs climbing over crossing lines or crossed by upper lines Check for lateral shorts (adjacencies) and breakdowns

13. Intern. Workshop on DEPFET Detectors and Applications, Ringberg, June 2013

ZMI5 test structures (iii)

Contact chaines (6000 contacts in serial) for all (three) contact layers

Applications, Ringberg, June 2013

ZMI5 test structures (iv) matrix tests

13. Intern. Workshop on DEPFET Detectors and Applications, Ringberg, June 2013

Rainer Richter MPG-HLL

Meander and comb test philisophy is applied for (narrow spaced) Drain lines

and for crucial regions in the DCD fanin

Simple measurements:

Often with a Good or Bad result

Measurements with automatic probe station - high statistics

Most important results (i) Breakdown of large plane Al2/Al1 plates most proned to hillocks

Two ILD (LTO) thicknesses: 600nm and 1000nm

Vbreak(V)	Chip	V=100V	V = -100 V	V=200V	V = -200 V
P1	D00	5	-5	-	-
	H04	G	-95	-	-
P2	D00	5	-5	-	-
	H04	5	-5	-	-
P3	D00	G	G	G	G
	H04	G	G	G	G
P4	D00	G	G	G	G
	H04	G	G	G	G
P5	D00	G	G	G	G
	H04	G	G	G	G
P6	D00	G	G	G	G
	H04	G	G	G	G
A1	D00	G	G	-	-
	H04	G	G	-	-
A2	D00	G	G	160	-
	H04	G	G	-	-

Most important results (ii) Breakdown on edges (+/- 100V) – highest field

Each entry represents about 500.000 crossing over edges

LTO 600nm

LTO 1000nm

I or V _{BD}		Pi		$\mathbf{P2}$		PS		P4		P8		P6*	
Chip	Structure	-100V	+100V	-100V	+100V	-100V	+100V	-100V	+100V	-100V	+10.0V	-100V	+100V
H01	alin 2u	-4,0E-7	5,8E-8	-8,3E-7	7,1E-8	-3,9E-9	5,0E-9	-7,8E-9	8,8E-9	-6,1E-9	5,6E-9	-5,2E-9	5,1E-9
	with poly	-1,0E+2	5,2E-8	-9,0E+1	7,312-8	-7,1E-9	6,4E-9	-1,2E-8	1,1E-8	-1, 3E-8	6,3E-9	-5,8E-9	6,9E-9
101	alin 2.5u≝	-7,0E+1	9,0E+1	-6,0E+1	1,0E+2	-1,6E-8	8,7E-9	-1,0E-8	1,2E-8	-1,2E-8	9,2E-9	-1,3E-8	2,2E-8
	with poly	-6,5E+1	2,3E-7	-5,8E+1	3,0E-7	-5,5E-8	1,6E-8	-1,7E-8	1,7E-8	-3,7E-8	1,3E-8	-1,4E-8	2,2E-8
J01	alin Su	-5,6E-9	1,0E-8	-5,3E-9	7,7E-9	-3,4E-9	3,9E-9	-3,9E-9	4,5E-9	-3,9E-9	4,5E-9	-4,6E-9	6,1E-9
	with poly	2,2E-9	1,0E+2	-5,1E-9	6,66-9	-2,6E-9	2,3E-9	-4,7E-9	4,9E-9	-2,2E-9	2, 1E-9	-3,7E-9	5,6E-9
K01	alin 4u	-5,7E-9	9,0E-9	-4,6E-9	6,916-9	-3,3E-9	3,8E-9	-3,8E-9	4,3E-9	-3,7E-9	4,315-9	-5,IE-9	6,8E-9
	with poly	-2,9E-9	4,4E-9			-2,0E-9	1,9E-9	-4,7E-9	4,7E-9	-1,8E-9	1,6E-9	-3,8E-9	5,2E-9
H02	al2n 2u	-1,3E-7	6,8E-7	-1,3E-7	4,5E-7	-2,3E-9	3,2E-9	-1,9E-8	1, 1E-7	-1, 3E-9	1,2E-9	-4,5E-9	3,3E-9
	with poly	-1,6E-7	9,0E+1	-2,1E-7	8, 6E + 1	-3,7E-9	6,3E-9	-2,0E-8	1,1E-8	-5, 1E-9	1, 1E-8	-5,0E-9	4,9E-9
102	al2n 2.5u	-2,8E-9	7,5E-9	-3,8E-9	1,4E-8	-1,3E-9	1,1E-9	-2,1E-9	3,9E-9	-1, 3E-9	1,2E-9	-3,0E-9	1,8E-9
	with poly	-9,6E-8	1,0E+2	-1,2E-7	9,8E+1	-2,5E-9	4,8E-9	-1,4E-8	9,5E-8	-3, 1E-9	6,2E-9	-3,1E-9	2,6E-9
J02	al2n_3u	-4,0E-9	9,7E-9	-3,9E-9	$1_{2}3E-8$	-1,2E-9	1,3E-9	-2,9E-9	4,5E-9	-1,5E-9	1,7E-9	-3,3E-9	2,4E-9
	with poly	-8,7E-8	1,0E+2	-1,0E-7	9,8E+1	-2,7E-9	5,0E-9	-1,3E-8	6,8E-8	-3,7E-9	7,5E-9	-3,8E-9	3,0E-9
K02	al2n 4u	-5,6E-9	1,6E-8	-4,58-9	1,5E-8	-1,5E-9	1,7E-9	-3,1E-9	7,3E-9	-1,96-9	2,1E9	-4,3E-9	2,96-9
	with poly	-7,2E-8	8,8E-7			-2,9E-9	5,0E-9	-1,1E-8	4,7E-8	-3,7E-9	7,2E-9	-4,7E-9	3,7E-9
B01	al1n 2.5u	5,7E-7	7,5E-8	-8,1E-7	9,26.8	-1,3E-8	7,6E-9	-1,7E-8	1,6E-8	-1,1E-8	8,1E9	-7,0E-9	8,3E-9
	with poly	-9,5E+1	6,4E-8	-9,0E+1	1,3E-7	-4,8E-9	4,8E-9	-1,9E-8	1,7E-8	-4, 1E-9	4,8E-9	-6,3E-9	7,5E-9
C01	alin 3u	-5,9E-7	7,7E-8	-8,1E-7	9,416-8	-1,2E-8	8,1E-9	-1,4E-8	1,4E-8	-1,1E8	7,96-9	-6,3E-9	6,1E-9
	with poly	-1,0E+2	6,2E-8	-9,0E+1	1,3E-7	-5,5E-9	5,5E-9	-1,9E-8	1,6E-8	-5,4E-9	5,6E-9	-5,8E-9	7,0E-9
D01	alin 4u	-1,0E+2	1,2E-7	-9,8E+1	1,5E-7	-1,3E-8	7,4E-9	-8,0E+0	8,0E+0	-6,2E-9	6,08-9	-5,1E-9	6,2E-9
	with poly	-9,8E+1	9,6E-8	-9,0E+1	1,8E-7	-3,0E-8	1,IE-8	-5,5E-8	2,4E-8	-2, 1E-8	1, 3E-8	-6,1E-9	6,9E-9
B02	al2n 2.5	-2,7E-9	9,4E-9	-2,3E-9	9,86-9	-6,5E-10	7,2E-10	-1,7E-9	3,2E-9	-1,0E-9	8,6E-10	-3,6E-9	2,0E-9
	with poly	-1,1E-7	9,5E+1	-1,7E-7	9,0E+1	-1,9E-9	2,9E-9	-1,8E-8	5,5E-8	-3, 3E-9	6,9E-9	-4,3E-9	2,9E-9
C02	al2n Su	-2,7E-9	8,2E-9	-2,8E-9	1,0E-8	-7,4E-10	6,2E-10	-2,3E-9	3,7E-9	-1,3E-9	8, 4E-10	-3,2E-9	2,1E-9
	with poly	-9,4E-8	9,5E+1	-1,6E-7	9,0E+1	-2,0E-9	2,9E-9	-1,8E-8	4,5E-8	-3,002-9	6,012-9	-3,8E-9	2,9E-9
D02	al2n 4u	-3,2E-9	6,98-9	-2,9E-9	8,5E-9	-1,3E-9	1,3E-9	-2,3E-9	3,1E-9	-1.4 E - 3	1,7E-9	-3,2E-9	
	with poly	-6,5E-8	1,0E+2	-1,2E-7	9,8E+1	-2,1E-9	2,7E-9	-9,1E-9	2,016-8	-3,1E-9	7,416-9	-3,8E-9	2,4E-9

1) Thicker (1000nm) LTO does the job

2) No difference between oxidized and non oxidized first aluminum layer

Conclusion: hillocks can be encapsulated by thicker oxide

Confirmed already by a first test project but will be checked again by EMCM2 (talk by Laci)

Our problems

Comb meas.	comb layer/gap	A1*	A2*	P1	P2	P3	P4	P5	P6**
DOWN	below matrices								
H01	al1n 2u	в	G	G	G	G	G	G	в
	with poly	в	G	в	в	в	в	в	в
101	al1n 2.5u*	G	G	G	G	G	G	G	в
	with poly	G	G	G	G	G	G	G	в
J01	al1n 3u	G	в	G	G	G	G	G	G
	with poly	G	G	G	G	G	G	G	G
K01	alin 4u	G	в	G	G	G	G	G	G
	with poly	G	M	G	G	G	G	G	G
H02	al2n 2u	в	G	в	в	в	в	в	В
	with poly	в	в	в	в	в	в	в	в
102	al2n 2.5u	в	G	G	G	в	G	G	в
	with poly	в	G	в	в	G	в	G	G
J02	al2n 3u	G	G	в	G	G	в	G	G
	with poly	в	G	в	G	G	G	G	G
K02	al2n 4u	G	G	G	G	G	G	G	G
	with poly	в	G	G	в	G	G	G	G
UP	above matrices								
B01	al1n 2.5u	G	G	G	G	G	G	G	G
	with poly	G	G	G	G	G	G	G	в
C01	al1n 3u	G	G	G	G	G	G	G	G
	with poly	G	G	G	G	G	G	G	G
D01	al1n 4u	G	G	G	G	G	G	G	G
	with poly	G	G	G	G	G	G	G	G
B02	al2n 2.5u	в	G	G	G	G	G	G	G
	with poly	в	в	в	в	G	в	в	G
C02	al2n 3u	G	G	G	G	G	G	G	G
	with poly	в	G	в	в	G	G	G	G
D02	al2n 4u	G	G	G	G	G	G	G	G
	with poly	в	G	G	G	G	G	G	G
LEFT	left from matrices								
F00	al1n 2u	в	G	G	G	G	G	в	в
	with poly	в	G	в	в	в	в	в	в
F01	al1n 2.5u	G	G	G	G	G	G	в	G
	with poly	G	G	G	G	G	G	в	в
F02	alin 3u*	G	G	G	G	G	G	G	в
	with poly	G	G	G	G	G	G	в	в
F03	alin 4u*	G	G	G	G	G	G	G	в
	with poly	G	G	G	G	G	G	в	в
RIGHT	right from matrices								
F04	alln 2u+	в	G	G	G	G	G	В	В
TOF	with poly	в	G	В	в	в	в	в	В
F05	alln 2.5u	G	G	G	G	G	G	G	G
100	with poly	G	G	G	G	G	G	в	в
F06	alin 3u	G	G	G	G	G	G	G	G
	with poly	G	G	G	G	G	G	в	G
F07	ailn 4u	G	G	G	G	G	G	G	G
	with poly	G	G	G	G	G	G	G	G

Comb structures

Some times shorts between adjacent lines

within the same Al layer !

If: crossing other lines and at small distances

Rainer Richter MPG-HLL

13. Intern. Workshop on DEPFET Detectors and Applications, Ringberg , June 2013

Short (adjacencies) test in Matrices

Wafer	Р	1	Р	2	Р	3	P4		P5		Р	6	$A1^*$		$A2^*$	
Chip	up	do	up	do	up	do	up	do	up	do	$^{\rm up}$	do	up	do	$^{\mathrm{up}}$	do
aGvsSo	В	G	\mathbf{G}	\mathbf{G}	В	G	\mathbf{G}	\mathbf{G}	\mathbf{G}	\mathbf{G}	В	В	В	В	\mathbf{G}	G
aGvsaC	G	G	\mathbf{G}	\mathbf{G}	G	G	\mathbf{G}	G	\mathbf{G}	\mathbf{G}	G	G	G	В	\mathbf{G}	G
aCvsSo	\mathbf{G}	G	\mathbf{G}	\mathbf{G}	\mathbf{G}	G	\mathbf{G}	G	\mathbf{G}	\mathbf{G}	\mathbf{G}	G	G	В	G	G
1.D-Co	\mathbf{G}	G	\mathbf{G}	\mathbf{G}	\mathbf{G}	G	В	G	\mathbf{G}	\mathbf{G}	В	В	В	В	G	G
$2.\mathrm{D-Co}$	\mathbf{G}	G	\mathbf{G}	\mathbf{G}	\mathbf{G}	\mathbf{G}	G	\mathbf{G}	\mathbf{G}	\mathbf{G}	В	В	В	В	\mathbf{G}	G
1.leCovsSo	-	-	-	-	-	-	-	-	\mathbf{G}	-	В	В	-	-	-	-
2.leCovsSo	-	-	-	-	-	-	-	-	-	-	В	В	-	-	-	-
1.riCovsSo	\mathbf{G}	В	В	В	В	\mathbf{G}	G									
2.riCovsSo	-	-	-	-	-	-	-	-	-	-	В	В	-	-	-	-
1.riCovsC	\mathbf{G}	G	\mathbf{G}	\mathbf{G}	\mathbf{G}	G	\mathbf{G}	G	\mathbf{G}	\mathbf{G}	G	G	-	-	-	-
2.riCovsC	-	-	-	-	-	-	-	-	-	-	\mathbf{G}	\mathbf{G}	-	-	-	-
1.riCovsG	\mathbf{G}	G	\mathbf{G}	В	В	-	-	-	-							
2.riCovsG	-	-	-	-	-	-	-	-	-	-	В	В	-	-	-	-

Shorts mainly on two wafers, different lithography paramters were used within the batch

Only 1 open was found on all matrices

100% yield of dcd fanin (for shorts as well as for breakdowns)

13. Intern. Workshop on DEPFET Detectors and Applications, Ringberg, June 2013

PXD6 status

Two last wafers were cut -> test matrices available

Very last two wafers 4 and 5 dedicated for the DESY test beam

are in the copper process - BCB mask written – ILD (Al2/Cu)

- PXD9 is running smoothly and still in time
- Contact and metal system is crucial in terms of yield
 - A special test project ZMI5 was processed
 - No need of AlO
 - Careful with Al lithography to avoid shorts
- PXD6 wafers 4 and 5 with large matrices for the DESY testbeam are getting the copper process

Design for testability

Aim: test all drain lines after 2nd metal with a probe card or 'flying needle' (repair if necessary by overetching, or repeating the litho), A significant number of Depfet IV ca be taken.

13. Interne Workshop in AFE EEE tratrices and structure to promide the space Applications, Ringberg, June 2013

Removing of the metal 2 connections after the tests

