Data Concentrator

Preparations and plans for the Vienna test in June and preliminary ROI extrapolation results

Jochen Dingfelder, Stephan Duell, Carlos Mariñas, Michael Schnell

schnell@physik.uni-bonn.de

University of Bonn

June 15th, 2013

universität**bonn**

Michael Schnell (University of Bonn)

Data Concentrator

June 15th, 2013 1 / 19

Content

《曰》《圖》《曰》《曰》 ([]]]

AMC v2

- Board from Beijing received in May 2013
- JTAG control ok
- FPGA flashing ok
- Four SFP 1.5 Gbit/s ok

- Gbit Ethernet ok
- Backplane testing
- DDR2 Memory in progress
- PowerPC Core not tested

Finesse Transmitter Board (FTB)

- Received from Cracow in May 2013
- JTAG control ok

- FPGA flashing ok
- Two SFP 1.3 Gbit/s ok

Michael Schnell (University of Bonn)

Data Concentrator

June 15th, 2013 4 / 19

물 이 이 물 이 물 님

Content

3 ROI Central Point Extrapolation with Hough Transformation

4 ROI Central Point Extrapolation with Genfit (Stephan Duell)

Michael Schnell (University of Bonn)

Testsetup in Vienna

Digital SVD and DATCON readout test from 26 to 28 of June 2013

Trigger Path

 Trigger Source: Agilent pulse generator connected to FTB over FADC

1.2

프 에 에 프 어

< 6 N

Data Path

 FADC sends 15 Mbit event data (stored in block mem) to FTB over LVDS

Data Path

 FTB transfers data over two optical links to DATCON and COPPER with clock provided by the FTSW

Data Path

DATCON decodes, temporaly stores and sends the data to a readout PC for crosscheck

Basic Protocol for FTB-DATCON Connection

FADC protocol: Zero suppressed + hit time finding

- APV# [0..47]: APV identification
- Sp# [0..127]: Strip identification
- N [0..1]: Next sample: $0 \rightarrow$ found hit time
 - $1 \rightarrow six$ sample mode
- Hit time mode: Peak sample (Peak [0..5]) + Time and Quality (T&Q [0..255]) + Peak sample (Data [0..255])
- Sample mode: Six consecutive samples D#0 .. D#5 [0..255]

< 47 ▶

Content

3 ROI Central Point Extrapolation with Hough Transformation

4 ROI Central Point Extrapolation with Genfit (Stephan Duell)

Michael Schnell (University of Bonn)

Simulation Setup

- basf2 simulation with full detector geometry, no background, uniform distribution of phi and theta (limited between 50 and 120 deg)
- Generating e^+ , e^- with momentum from 0.1 to 3 GeV
- Tracking: Hough transformation with 8 iterations in (x,y) and (y,z)
- Extrapolation to PXD ladder with angle/track radius lookup table New
- Precise hit-finding by track extrapolation over sampling and point of closest approach ^{New}

Visualization

Michael Schnell (University of Bonn)

Visualization

Visualization

Performance of ROI size

- Table shows difference between real and extrapolated hit
- 10 Events for each momentum, taken worst value
- Layer 1 pixel pitch = 50x60 um ; Layer 2 pixel pitch = 50x85 um

Layer 1				
p [GeV]	∆x [px]	∆z [px]		
3	0.65	0.88		
1	0.51	0.43		
0.6	5.41	0.88		
0.3	7.72	0.43		
0.1	29.28	17.29		

Layer 2				
p [GeV]	∆x [px]	∆z [px]		
3	1.11	0.96		
1	0.76	0.47		
0.6	7.51	0.98		
0.3	10.95	0.42		
0.1	42.49	17.84		

Content

3 ROI Central Point Extrapolation with Hough Transformation

Image: A matrix and a matrix

Genfit Results: Layer 1

- Tracking with the basf2 genfit module
- Track extrapolation and hit point estimation over genfit with GFRectFinitePlane(), GFDetPlane() and getPosMomCov()

Layer 1				
p [MeV]	∆ <i>x</i> [px]	Δ <i>z</i> [px]		
2000	22	22		
1000	20	21		
500	25	21		
300	26	22		
200	40	24		
150	43	32		
100	68	52		
80	84	70		

Layer 2				
p [MeV]	∆ <i>x</i> [px]	Δ <i>z</i> [px]		
2000	19	23		
1000	20	23		
500	21	22		
300	23	23		
200	24	22		
150	27	24		
100	39	40		
80	55	61		

김 글 제 김 글 제 글 날

Genfit ROI Performance

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Hough Transformation ROI Performance

Michael Schnell (University of Bonn)

Thank you for your attention!

Backup

Internal Protocol

- Type: 2 Bit
 - 00: Command (CMD)
 - 01: User Data (DATA)
- Flags: 14 Bit
 - (0000)₁₆: Normal operation
 - (0001)₁₆: Test the connection, waiting for reply (only command)
 - (0002)₁₆: Test the connection, reply (only command)
 - (1XXX)₁₆: Error, kind of error indicated by XXX

Real Topology Layout

- 3 carrier boards with 4 AMCs
 - \rightarrow 4:1 / 3:1 Multiplexer in each AMC card
 - → Use one SFP+ transceiver for inter-carrier board transmission
 - → AMC card interconnection over high-speed RocketIOs
- 1 AMC as data collector
 - → 3:1 Multiplexer with track reconstruction algorithm
 - → Ethernet connection for transmission of tracks to ATCA

물 문 제 물 제 물 물

Testbeam Simulation Setup

- Set up two layers with one PXD half ladder each.
- And four layers of the SVD in the suggested distance as in the final design
- Run simulation with electrons with energies between 0.5 and 2 GeV, 1 T magnet field

Testbeam Visualization

Michael Schnell (University of Bonn)

Data Concentrato

June 15th, 2013 19 / 19

Testbeam Visualization

Michael Schnell (University of Bonn)

Data Concentrato

Testbeam Visualization

Michael Schnell (University of Bonn)