Update on PXD Mechanics

Karlheinz Ackermann, Christian Kiesling, Martin Ritter

13th International Workshop on DEPFET Detectors and Applications Ringberg, June 14, 2013

Max-Planck-Institut für Physik

DEPET

Patch Panels & Kapton Cables Transfer Lines Mini Fittings PXD Support

Patch Panels & Kapton Cables

Current baseline:

- minimal space in forward direction with automatic vaccum seal
- inset forward patch panels into BP endflange

- backwards patch panels outside of endflange
- we think we can keep length of the kapton below 50 cm on both sides

Kapton Cables

- "new" cables are in brown, old cables shown in yellow
- expansion compensation now done with waves,
 500 g mm⁻¹
- larger fin to avoid microvias
- more routing friendly shape at PXD stress relief

Cable lengths

Current cable lengths:

- 499 mm and 464 mm in fwd/bwd in layer 1
- ▶ 486 mm and 462 mm in fwd/bwd in layer 2

but still under construction target is to stay below 490 mm

- patch panel design not finialized
- ▶ Taiyo can manufacture 490 mm
- exceeding that length raises costs

Transfer Lines

Baseline for CO2 transfer line increased from 12 mm diameter to 18 mm diameter per line

- 12 mm where not proven to work but seemed feasible
- ▶ CERN wants to use the 18 mm lines for ATLAS
- idea is to have maximum compatibility between the two systems

Advantage:

lines would be more flexible

Disadvantages:

- bending radius is problematic
- service space allocation is sadly no longer sufficient is using 18 mm lines everywhere

Now obtained piece of the proposed transfer lines

Transfer Lines

Baseline for CO₂ transfer line increased from 12 mm diameter to 18 mm diameter per line

- 12 mm where not proven to work but seemed feasible
- ▶ CERN wants to use the 18 mm lines for ATLAS
- idea is to have maximum compatibility between the two systems

Advantage:

lines would be more flexible

Disadvantages:

- bending radius is problematic
- service space allocation is sadly no longer sufficient is using 18 mm lines everywhere

Now obtained piece of the proposed transfer lines

Transfer Line Bending

- ▶ bending by 40° (elastically) needs about 3 kg
- quoted bending radius is 45 mm
- tested down to 20 mm
- xray shows no problems even for the 20 mm bend
- we are hopeful that this is feasible but further tests needed

Small pressure/vacuum connectors

B (20:1)

- Immanuel proposed a pipe connector with very small footprint
- We currently investigate different version of this connector to guarantee many open/close cycles
- Connector is for one line, we have three lines per CO₂ pipe and two per "N₂ in" line

Mini Fittings

Successful testing of Mini Fittings found by Immanuel:

- pressure test with water (250 bar) and CO2 (150 bar)
- tightness test with CO2 (110 bar, 48 h)
- helium leak test at room temperature and in liquid nitrogen
- repeatability (10 open/close cycles with same gasket)

No problems found, we are confident that we can use them

Cooling Pipe Isolation

- cooling pipes have plastic support
- ceramic fitting for electrical insulation close to support
- pipes isolated between support and endflange (e.g. shrink sleeve)

Kapton Stress Relief

- kapton stress relief now done using larger plastic pieces
- fibers routed through stress relief pieces
- stress relief for fibers using headless screw

Endflange attachement

- endflange covered in parylen (15 μm, isolation up to 60 V)
- endflange attached to PXD support using gliding pin in plastic bush
- screws changed to plastic
- screws will be removed in forward direction after installation for gliding support

Mylar Cover

- changed kapton stress reliefs make it easier to attach mylar cover if needed
- $\,\blacktriangleright\,$ outside the acceptance a thick 100 μm foil could be used
 - a very thin foil could be used in the acceptance by gluing it to the outer part

Conclusions

Lots of detail work going on at the moment

Kapton cables:

- optimized the geometrical size where possible to avoid microvias and simplify routing
- hopeful to get total length below 490 mm

Transfer lines:

- new transferline design quite flexible
- bending radius of 20 mm seems to be feasible

Mini fittings:

- tested pressure, tightness and leakage
- no problems found

PXD Support:

- implemented electrical isolation of PXD endflange
- redesigned stress relief to simplify fiber routing and mylar covering

