DEPFET detectors for the **Molecular Movie**

mpsd

Sascha Epp

Centre for Free-Electron Laser Science

Universität Hamburg

Condensed Matter Department (Prof. Andrea Cavalleri)

Atomic Resolution Department (Prof. R. J. Dwayne Miller)

- **Division 3**
- Division 4
- Division 5 (Theory)

mpsd

Max-Planck-Institut für Struktur und Dynamik der Materie

Electron diffraction

The wave-particle duality of particle beams

$$\lambda_{dB} = \frac{nc}{\sqrt{2E_{kin}E_0 + E_{kin}^2}} < 0.1 \,\dot{A}$$

0.1 A corresponds to 100 keV X-rays

We exploit the wave nature of the electron Need to detect electrons direct-hit detector in-direct hit detector 231 (c) 322 130

Diffraction out to less than 0.2Å!

mpsd

Max Planck Institute for Structure and Dynamics of Matter

MAX-PLANCK-GESELLSCHAF

IAX-PLANCK-GESELLSCHAF

What is the mechanism of correlated atomic displacements? Structure - Function Correlation \Rightarrow resolve atomic motions on timescales faster than the onset of diffusive motions.....observe force correlations

Max Planck Institute for Structure and Dynamics of Matter

AAX-PLANCK-GESELESCHAF

Experiments Small scale & with e-

- keV FED solid state
- keV FED liquid phase
- keV FED gas phase
- REGAE Diffraction
- keV time-resolved TEM
- REGAE Dynamic RTEM

Y VERSUS E-No winner

FED

DC compact e-guns 200-300 fs 10³-10⁴ e/pulse (10⁸-10⁹ ph/pulse)

New DC e-gun designs 100-300 fs 10⁴-10⁵ e/pulse (10⁹-10¹⁰ ph/pulse)

RF-compression e-guns ~100 fs (300-400 fs) 10⁵-10⁶ ph/pulse (10¹⁰-10¹¹ ph/pulse)

Relativistic e-guns (MeV)

~100 fs 10⁶-10⁸ ph/pulse (10¹⁰-10¹² ph/pulse)

fs X-ray

SLS—3rd generation LS, slicing 200 fs 200 ph/pulse

Plasma sources ~100 fs 10³ ph/pulse @ 1 kHz (5 mJ) 10⁴⁻⁵ ph/pulse @ 10 Hz (100 mJ)

SPPS, LCLS 2003-2009 ~100 fs (time stamping/single shot) 10⁶ ph/pulse

4th **generation light sources.** sub-100 fs (200 fs, timing jitter) 10¹² ph/pulse (LCLS) **2009** - npsc

X-FEL/REGAE COMPARISON

Example for UED Superlattices in 2-D systems

Charge density waves (CDW), definition:

A possible ground state of a metal in which the electron charge density is sinusoidally modulated in space.

http://www.physnet.uni-hamburg.de/iap/group_g/F_Praktikum/Rastertunnelmikroskopie/

DAX-PLANCK-GESELLSCHAF

mpso

Eicherberger, Sciaini et al, Nature 2010

Max Planck Institute for Structure and Dynamics of Matter

Static Diffraction

Hundreds of diffraction orders for structure refinement

311

Diffraction out to less than 0.2Å!

Comparison of "difference ediff pattern" HT-LT vs. optically induced

note: qualitatively similar for the majority of peaks

FED results – fs ultrafast dynamics, Observation of Transient State

Typical time-resolved change in diffraction intensity – early dynamics – shared (qualitatively) by several peaks (~50%)

note: this ps rise/drop varies from 20 to -35% for different peaks

FED results – ps/ns dynamics Evidence for transient state

Typical time-resolved change in diffraction intensity – long dvnamics – shared (qualitatively) by several peaks (~50%):

Movies (live...)

Experiments Small scale & with e-

- keV FED solid state
- keV FED liquid phase
- keV FED gas phase
- REGAE Diffraction
- keV time-resolved TEM
- REGAE Dynamic RTEM

Further Evolution in atom gazing:Solution Phase Dynamics

Dutside view liquid spacer material silicon substrate

TEM nanocell with flow!

cross sectional view

Christina Müller, U Toronto

Setup schematic: MRS proceedings 2013, submitted

useful notes:

- viewing area 50x50um
- flow rates in the uL per hour range (low sample need)
- automated syringe pump used
- 100/125/200keV TEM and 200keV STEM used

first results: biomedical applications - amyloid fibrils -

responsible for many diseases such as Alzheimers, Diabetes, Parkinson....

extra-cellular depositions of protein fibrils with characteristic appearance in TEM and x-ray, spectroscopy etc.

P. Fraser, *Biochem.* 2000, <u>39</u>, 13269.
M. Faendrich, *Cell. Mol. Life Sci.* 2007, <u>64</u>, 2066.
http://talaga.rutgers.edu/research/amyloid.php

amyloid fibrils

Max Planck Institute for Structure and Dynamics of Matter

MAX-PLANCK-GESELLSCHAF

Detector requirements

Experiment	Energy / MeV	# Pixels	Single-shot Dynamic range	Frames per second read out
REGAE relativistic electron diffraction (static & time-resolved)	3 – 5	1k x 1k (1M)	10 ³ (up to 10 ⁴)	100 Hz
REGAE relativistic TEM ¹ mode	3 – 5	2k x 2k (4M)	100	100 Hz
time-resolved TEM ¹ (adapted commercial TEM ¹)	0.1 - 0.3	1k x 1k (1M)	100	ca. 1-10 MHz
keV UED ² – solid state samples	0.1 - 0.3	1k x 1k (1M)	10 ³ (up to 10 ⁴)	1 kHz
keV UED ² – liquid phase samples	0.1-0.3	1k x 1k (1M)	100	1 kHz
keV UED ² – gas phase samples	0.1 - 0.3	1k x 1k (1M)	>3	1 kHz

performed at MPSD. The most demanding requirements are indicated in red. (¹transmission electron microscope ²ultrafast electron diffraction)

Can one single system serve all requirements?

Principally yes, but we make two different systems!

mpso

Max Planck Institute for Structure and Dynamics of Matter

MAX-PLANCK-GESELLSCHAF

Detector specifications

Two different detector systems

Direct hit detector

(50 x 50

100

60 (

Max Planck Institute for Structure and Dynamics of Matter

momentum space

images

Sensor active area

Max Planck Institute for Structure and Dynamics of Matter

Detector specifications Two different detector systems

Rainer Richter wants to do some VooDoo for Factor 5-10

ampient temperature

Operating temperature

Might slow down the detector.....

momentum space images

U		
Primary e- energy range	80 keV-5 MeV	80 keV-350 keV
Range of Ø num. secondary e-	between 5k-12k	typically 1000 per 0.1 MeV
Table 2: Detector specifications.		

mpsd

Real space images

Work packages Responsibilities

In total there are 8 work packages devoted to:

1. Sensor design, fabrication and tests [HLL]: pixel cell and technology, defining chip parameter, simulations, radiation hardness, layout of wafer for production, fabrication and processing of wafer, tests

mpso

- 2. Sensor module assembly [HLL]: definition of materials, assembly
- 3. Module integration [MPI-SD]: Thermal and electrical engineering and performance, definition of materials, fabrication of mechanical parts
- 4. System design [MPI-SD]: Scintillator optics, R&D for scintillator design, simulations, integration to sensor, definition and optimization of operation modes
- 5. f/e electronics [?]: ASICs design
- 6. back-end electronics [?]: FPGA system design, definition of protocols and interfaces between sensor and DAQ, Power supplies, slow control and housekeeping
- 7. DAQ and Software [MPI-SD]: definition of hardware, programming of user interface, data representation and analysis
- 8. Commissioning [HLL, MPI-SD]:

Max Planck Institute for Structure and Dynamics of Matter

Acknowledgements

Past Ralph Ernstorfer Maher Harb Christoph Hebeisen Tibault Dartilongue Mariko Yamaguchi Sergei Kruglik Robert Jordan Jason Dwyer Brad Siwick

U of Toronto Group:

Present:U of T/U of H CFEL/DESY

German Sciaini Hubert Jean-Ruel Raymond Gao Cheng Lu Gustavo Moriena Ryan Cooney Dongfang Zhang Julian Hirscht Masaki Hada Andrew Marx Nelson Liu

HLL:

Hans-Günther Moser Rainer Richter Laci Andricek Florian Schopper Andreas Wassatsch Christian Koffmane DESY/U of Hamburg Collaborators: Klaus Floettmann Hossein Delsim-Hashemi Kurt Mueller Shyma Bayesteh Jurgen Rossbach Frank Mayet Max Hachmann mpsd

For more details: G. Sciaini et al. Rep. Prog. Phys. 74 (2011) 096101