Implications of the Higgs discovery

Abdelhak DJOUADI (LPT Paris-Sud)

• The Higgs in the Standard Model and beyond

- The Higgs at the LHC
- First implications of the discovery

• What next?

MPI Munich, 18/06/2013

Implications of the Higgs discovery – A. Djouadi – p.1/25

We have a theory, the Standard Model, which describes microscopic world.

the interaction of $s = \frac{1}{2}$ matter particles via exchange of s = 1 force particles.

It is based on a gauge symmetry: $SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y}$

- relativistic quantum field theory,
- perturbative, renormalisable,
- and most of all, very successfull:
- \Rightarrow infinitely precise predictions,
- \Rightarrow high precision experimental tests.

But true only if particles are massless^a: putting naively masses for W/Z/fermions spoils gauge invariance and therefore the nice properties of the theory above.

Problem: how to generate particle masses in a gauge invariant way?

 \Rightarrow the Brout–Englert–Higgs mechanism for EW symmetry breaking!

^aThis has nothing to do with mass of macroscopic objects due to binding energy... MPI Munich, 18/06/2013 Implications of the Higgs discovery – A. Djouadi – p.2/25

Introduce a doublet of complex scalar fields $\Phi = \begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix}$: 4 degrees of freedom. Scalar potential: $V_{S} = \mu^{2} \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^{2}$, $SU(2)_{L} \times U(1)_{Y}$ invariant. $\mu^2 > 0$: minimum of V_S at $\langle 0 | \Phi^0 | 0 \rangle = 0$: 4 new scalar particles with mass $\mathbf{m_S} = \mu$. $\mu^2 < 0$: (via quantum fluctuations?): the field Φ develops a non–zero vev $\langle \mathbf{0} | \Phi^{\mathbf{0}} | \mathbf{0} \rangle = \mathbf{v} = \sqrt{\frac{-\mu^2}{\lambda^2}} \left(= \mathbf{246 \ GeV} \right)$ $\mu^2 > 0$ $\mu^2 < 0$ fields/interactions still SU(2)×U(1) symmetric $V(\phi)$ but vaccum not \Rightarrow spontaneous EW breaking. \Rightarrow three d.o.f. for $M_{\mathbf{W}^{\pm}}$ and $M_{\mathbf{Z}}.$ Introduce interaction of fermions with same Φ : Im(\$) fermions masses $m_{\rm f}$ also generated! Re(ϕ)

Residual d.o.f corresponds to spin–0 Higgs particle.

- Unique particle: spin zero, not matter particle and not force particle,
- \bullet couples to all particles \propto their masses: $g_{Hff}\,\propto\,m_{f},g_{HVV}\,\propto\,M_{V}$,
- couples to itself, $g_{HHH} \propto M_{H}^{2}$ with the relation $M_{H}^{2} = 2\lambda v^{2}$. MPI Munich, 18/06/2013 Implications of the Higgs discovery – A. Djouadi – p.3/25

Since v is known, the only free parameter in the SM is M_H (or λ). Pre-LHC constraints on M_H :

• Experimental constraints:

 $\label{eq:massive} \begin{array}{l} - \mbox{ direct searches at LEP/Tevatron:} \\ M_H > 114 \mbox{ GeV}, M_H \neq 160 \mbox{ GeV} \\ - \mbox{ quantum effects in EW data:} \\ M_H < 160 \mbox{ GeV @95\% confidence.} \\ \hlineleft {\mbox{ or mitarizes the theory:}} \\ \mbox{ without H: } |A_0(VV \rightarrow VV)| \propto E^2 \\ \mbox{ including H: } |A_0| \propto M_H^2/v^2 \\ \hlineleft {\mbox{ theory unitary but } M_H \lesssim 700 \mbox{ GeV...}} \end{array}$

• Triviality and stability bounds: coupling evolves with energy $\lambda \equiv \lambda(\mathbf{Q^2})$ $\lambda \gg 1$: becomes infinite (no perturbation) $\lambda \ll 1$: potential unstable (no EWSB) $\Lambda \sim M_{Pl} : 120 \lesssim M_H \lesssim 180 \ GeV!$

A major problem in the SM: the hierarchy/naturalness problem.

Radiative corrections to M_{H}^{2} in SM with a cut–off $\Lambda\!=\!M_{NP}\!\sim\!M_{Pl}$

 $M_{\rm H}$ prefers to be close to the high scale than to the EWSB scale...

 $\Delta M_{H}^{2} ~\equiv~ \stackrel{H}{\dots} \left(\begin{array}{c} \mathsf{f} \end{array} \right) \stackrel{H}{\dots} ~\propto \Lambda^{2} \approx (10^{18}~\mathrm{GeV})^{2}$

Three main avenues for solving the hierarchy problem:

1) Compositness: there is another layer!

all particles are not elementary ones.

Techicolor: like QCD at scale of 1 TeV.

- \Rightarrow H bound state of two fermions
- \Rightarrow properties \neq from of SM Higgs.

2) Extra space-time dimensions

in which at least gravitons propagate; effective gravity scale $M_{Pl}^{eff}\!\approx\!\Lambda_C\!\approx$ TeV

- \Rightarrow same Higgs mechanism as in SM,
- \Rightarrow but possibility of Higgsless mode!

3) Supersymmetry: doubling the world.

- SUSY = most attractive SM extension:
- links $s\!=\!\frac{1}{2}$ fermions to $s\!=\!1$ bosons
- links internal and space-time symmetry
- if made local, it provides link to gravity
- naturally present in string theory (TOE?)
- natural $\mu^2 < 0$: radiative EWSB
- fixes gauge coupling unification
- ideal candidate for Dark Matter...
- Needs two doublets Φ_1, Φ_2 for EWSB:
- \Rightarrow extended Higgs sector: h,H,A,H^{\pm} with $h\!\oplus\!H\!\approx\!H_{\mathbf{SM}}$
- SUSY \Rightarrow only two inputs at tree level: $taneta\!=\!v_2/v_1, M_A$
- SUSY \Rightarrow hierarchy spectrum: $M_h\!\approx\!100$ GeV, $M_H\!\approx M_A\approx M_{H^\pm}$
- (SUSY scale $M_{\rm SUSY}$ pushes via radiative corrections $M_{\rm h}$ to 130 GeV).
- \bullet Most often decoupling regime: $h\!\equiv\!H_{\rm SM}$, others decouple from W/Z.

Teilchen	SUSY Partner
Materieteilchen Quarks 0 3 0 0 0 0	Sfermionen Squarks 10 (1) (1) 10 (1)
Leptonen 999	Sleptonen 0 0 0
Kräfteteilchen	Gauginos
Photon 🕢	Photino 🔞
W, Z Boson 🙀 😨	W-Ino, 2-ino 😡 😒
Gluon ()	Gluino 📵
Graviton 🕢	Gravitino 🕝
Higgsteilchen	Higgsinos
0 8 8 C	6666

1. The Higgs in the Standard Model and beyond and along the avenues, many possible streets, paths, corners...

Which scenario chosen by Nature? The LHC was devised to tell!

MPI Munich, 18/06/2013

Implications of the Higgs discovery – A. Djouadi – p.7/25

Physics at hadron machines is a nightmare...

- Protons non–elementary: difficult environment
- Huge cross sections for QCD processes
- Small cross sections for EW Higgs signal S/B $\gtrsim 10^{10} \Rightarrow$ a needle in a haystack!
- Need some strong selection criteria:
- trigger: get rid of uninteresting events...
- select clean channels: leptons and photons
- use specific kinematic features of Higgs
- Combine # decay/production channels (and eventually several experiments...)
- Have a precise knowledge of S and B rates (higher/quantum effects can be factor of 2!)
- Gigantic experimental + theoretical efforts (more than 30 years of extremely hard work!)
 to make sure that the Higgs will not escape!

MPI Munich, 18/06/2013

Implications of the Higgs discovery – A. Djouadi – p.8/25

Since v is known, the only free parameter in the SM is $M_{\mathbf{H}}$ (or λ). Once M_H known, all the properties of the Higgs boson are fixed.

Example: Higgs decays in the SM

- As $m g_{HPP} \propto
 m m_P$, H will decay into heaviest particle phase-space allowed:
- $ullet \, \mathbf{M_H} \lesssim \mathbf{130} \ \mathbf{GeV}$:
- $H \rightarrow b \bar{b}$: dominant decay
- $-\mathbf{H} \rightarrow \mathbf{cc}, \tau^+ \tau^-, \mathbf{gg} = \mathcal{O}(\mathbf{few}\%)$
- $-\mathbf{H} \rightarrow \gamma \gamma, \mathbf{Z} \gamma = \mathcal{O}(\mathbf{0}.1\%)$
- $M_H \gtrsim 130 \text{ GeV}$:
- $-\,\mathbf{H}
 ightarrow\mathbf{WW},\mathbf{ZZ}$ dominant
- decays into tt for heavy Higgs
- Total Higgs decay width:
- very small for a light Higgs
- comparable to mass if heavy

MPI Munich, 18/06/2013

Implications of the Higgs discovery – A. Djouadi – p.9/25

Main Higgs production channels

Large production cross sections with gg \rightarrow H by far dominant process 1 fb⁻¹ $\Rightarrow O(10^4)$ events@LHC $\Rightarrow O(10^3)$ events@Tevatron but eg BR(H $\rightarrow \gamma\gamma$, ZZ $\rightarrow 4\ell$) $\approx 10^{-3}$... a small # of events at the end... with a huge QCD-jet background.

 \Rightarrow an extremely challenging task!

100 $\sigma(\mathbf{pp} \rightarrow \mathbf{H} + \mathbf{X}) \ [\mathbf{pb}]$ $\sqrt{s} = 7 \text{ TeV}$ MSTW2008 $gg \rightarrow H$ 10 $m_t = 173.1 \text{ GeV}$ $qq \rightarrow qqH$ $q\bar{q} \rightarrow Z H$ $\mathbf{p}\mathbf{p}\!\rightarrow\! t\overline{t}H$ 0.1 0.01140 160 180 200 115 300 400 500 $M_{H} [GeV]$

Main sensitive channels:

 $\begin{array}{l} \mathbf{gg} \rightarrow \mathbf{H} \rightarrow \boldsymbol{\gamma} \\ \mathbf{gg} \rightarrow \mathbf{H} \rightarrow \mathbf{ZZ} \rightarrow \mathbf{4\ell}, \, \mathbf{2\ell}\mathbf{2\nu}, \, \mathbf{2\ell}\mathbf{2\nu} \\ \mathbf{gg} \rightarrow \mathbf{H} \rightarrow \mathbf{WW} \rightarrow \boldsymbol{\ell\nu\ell\nu} + \mathbf{0}, \, \mathbf{1j} \end{array}$

also help from other channels:

– VBF+
$$gg \rightarrow H \rightarrow \tau \tau$$

–
$$q\bar{q} \rightarrow HV \rightarrow b\bar{b}\ell X$$

Things are even more complicated/challenging in BSM: MSSM case-

- ullet More Higgs particles: $oldsymbol{\Phi} = \mathbf{h}, \mathbf{H}, \mathbf{A}, \mathbf{H}^{\pm}$
- some couple almost like the SM Higgs,
- but some are more weakly coupled.
- In general same production as in SM but also new/more complicated processs (rates can be smaller or larger than in SM)
- Possibility of different decay modes
 (and clean decays eq into over suppressed)
- (and clean decays eg into $\gamma\gamma$ suppressed
- Impact of light SUSY particles?

 \Rightarrow In general very complicated situation! But simpler in the decoupling regime:

- h as in SM with $M_{\rm h}\!=\!115\!-\!130~\text{GeV}$
- dominant mode: $gg, b\bar{b} \rightarrow H/A \rightarrow \tau \tau$ It is even more tricky in beyond MSSM! and also in some non–SUSY extensions.

Implications of the Higgs discovery – A. Djouadi – p.11/25

a challenge met the 4th of July, when the Higgs was discovered at LHC.

3. Implications of the discovery: is it a Higgs?

MPI Munich, 18/06/2013

Implications of the Higgs discovery – A. Djouadi – p.13/25

3. Implications of the discovery: is it a Higgs?

20 _

2.0 س

0.6 0.8

1.2 1.4 1.6

1

From ATLAS/CMS results:

Higgs couplings to elementary particles as predicted by Higgs mechanism

- \bullet couplings to WW,ZZ, $\gamma\gamma$ roughly as expected for a CP-even Higgs
- couplings proportionial to masses as expected for the Higgs boson
 So, it is not only a "new particle", the "126 GeV boson", a "new state"...
 IT IS A HIGGS BOSON!

But is it THE SM Higgs boson or A Higgs boson from some extension? To check this you need very precise measurements to see small deviations...

3. Implications of the discovery: the SM

The Higgs looks like expected in SM \Rightarrow a triumph for high-energy physics! Indirect constraints from EW data ^a H contributes to RC to W/Z masses:

$$\mathcal{W}_{\mathbf{Z}} = \mathcal{W}_{\mathbf{X}} =$$

Fit the EW precision measurements, one obtains $M_{\rm H}=92^{+34}_{-26}$ GeV, or

 $M_{
m H} \lesssim 160$ GeV at 95% CL

compared with the measured mass

 $M_{H}\!\approx\!126$ GeV.

A very non-trivial consistency check! (remember the story of the top quark!). The SM is a very successfull theory!

^{*a*} Still some problems with A_{FB}^{b} (LEP), A_{FB}^{t} (TeV) and g-2 but not severe... MPI Munich, 18/06/2013 Implications of the Higgs discovery – A. Djouadi – p.15/25

 Δ^2

3. Implications of the discovery: the SM

- The theory preserves unitarity as we have $M_{\rm H}\!\ll\!700$ GeV...
- Particle spectrum complete: Fourth generation excluded by $H \rightarrow ZZ, WW, \gamma\gamma, bb$ rates...

(as well as by direct searches@LHC...)

• Extrapolable up to highest scales. $\frac{\lambda(\mathbf{Q}^2)}{\lambda(\mathbf{v}^2)} \approx 1 + 3 \frac{2\mathbf{M}_{\mathbf{W}}^4 + \mathbf{M}_{\mathbf{Z}}^4 - 4\mathbf{m}_{\mathbf{t}}^4}{16\pi^2\mathbf{v}^4} \log \frac{\mathbf{Q}^2}{\mathbf{v}^2}$

tops make $\lambda < 0$: unstable vacuum

 $\begin{array}{l} \Lambda_{C}\!\sim\!M_{Pl} \Rightarrow M_{H} \!\gtrsim\! 129\,GeV! \\ \text{at 2loops for } m_{t}^{pole} \!=\! 173\,\text{GeV....} \\ \text{(Degrassi et al., Bezrukov et al.)} \\ \text{but what is measured } m_{t} \text{ value?} \end{array}$

- SM = TOE? Maybe not (?):
- m_{ν} , DM, GUT OK with extensions
- but about the hierarchy problem?

3. Implications of the discovery: beyond the SM

Rates compatible with SM fit of all data ⇒ OK at ≈ 20%
No other resonnance found in many search channels....
Huge implications for BSM!

Some beyond the SM scenarios are in 'mortuary":

- Higgsless models, extreme Technicolor and composite scenarios, ...
- fermiophobic Higgs, gauge-phobic Higgs, 4th generation, ...
 Some beyond the SM scenarios are in "hospital":
- 'light" versions of Technicolor and composite models...
- many other extended Higgs scenarios: private, portal,

Other BSM scenarios are strongly constrained...

and the best example is Supersymmetry and the MSSM.

3. Implications of the discovery: the MSSM

In MSSM, two doublets $\mathbf{H_1}, \mathbf{H_2} \Rightarrow$ 5 physical states: $\mathbf{h}, \mathbf{H}, \mathbf{A}, \mathbf{H^{\pm}}$

only two parameters at tree–level: $aneta, \mathbf{M_A}$ but rad. cor. important:

 $\mathbf{M_h} \! \lesssim \! \mathbf{M_Z} | \mathbf{cos2}\beta | \! + \! \mathbf{RC} \! \lesssim \! \mathbf{130 \ GeV} \ , \ \mathbf{M_H} \! \approx \! \mathbf{M_A} \! \approx \! \mathbf{M_{H^\pm}} \! \lesssim \! \mathbf{M_{EWSB}}$

126 GeV is large for MSSM: $\Rightarrow M_h$ needs to be maximal from start...

 $\mathbf{M_{h} \stackrel{M_{A} \gg M_{Z}}{\rightarrow} M_{Z} |\cos 2\beta| + \frac{3\bar{\mathbf{m}}_{t}^{4}}{2\pi^{2} \mathbf{v}^{2} \sin^{2} \beta} \left| \log \frac{\mathbf{M}_{S}^{2}}{\bar{\mathbf{m}}_{t}^{2}} + \frac{\mathbf{X}_{t}^{2}}{\mathbf{M}_{S}^{2}} \left(1 - \frac{\mathbf{X}_{t}^{2}}{12\mathbf{M}_{S}^{2}} \right) \right|$

- decoupling regime with $\mathbf{M}_{\mathbf{A}}\!\sim\!\mathcal{O}$ (TeV); h is SM–like
- large values of tan $eta\gtrsim 10$ to maximize tree-level value;
- ullet maximal mixing scenario: ${f X_t}=\sqrt{6}M_{f S}$;
- \bullet heavy stops, i.e. large $M_{S}\!=\!\sqrt{m_{\tilde{t}_{1}}m_{\tilde{t}_{2}}}$; but $M_{S}\!\lesssim\!3$ TeV....

Scan parameter space with all corrections and full SUSY spectrum

Constrained MSSMs are interesting from model building point of view:

- concrete schemes: SSB occurs in hidden sector $\stackrel{\text{gravity,...}}{\rightarrow}$ MSSM fields

– provide solutions to some MSSM problems: CP, flavor, etc...

– parameters obey boundary conditions \Rightarrow small number of inputs... the protype model is mSUGRA: $\tan\beta$, $\mathbf{m_{1/2}}$, $\mathbf{m_0}$, $\mathbf{A_0}$, $\mathrm{sign}(\mu)$ full scan of the model parameters with $123~\mathrm{GeV} \le M_h \le 129~\mathrm{GeV}$ ____

3. Implications of the discovery: the MSSM

\Rightarrow SUSY scale rather large...

¹⁴⁰
 ⁹
 ¹³⁵
 ¹⁴⁰
 ¹³⁵
 ¹³⁵
 ¹

130

B tan 40 35

especially in constrained MSSMs ...

especially squarks/gluinos...

3. Implications of the discovery: the MSSM

A 126 GeV Higgs provides information on BSM and SUSY in particular: • $M_H = 119$ GeV would have been a boring value: everybody OK.. • $M_H = 145$ GeV would be a devastating value: mass extinction.. • $M_H \approx 126$ GeV is Darwinian: (natural) selection among models.. SUSY spectrum heavy; except maybe for weakly interacting sparticles and also stops \Rightarrow more focus on them in SUSY searches!

One has to refine all other MSSM Higgs searches in particular:

• gg, bb
$$\rightarrow$$
 H/A \rightarrow $\tau\tau$, $\mu\mu$

$$ullet \mathbf{t}
ightarrow \mathbf{H}^+ \mathbf{b}, \mathbf{gg}
ightarrow \mathbf{t} \mathbf{H}^-$$

$$ullet \, \mathbf{H}
ightarrow \mathbf{WW}, \mathbf{ZZ}$$
 as in SM

- $\bullet ~ \mathbf{gg}, \mathbf{H}/\mathbf{A} \to \mathbf{tt}$
- $\bullet \ \mathbf{H} \rightarrow \mathbf{h} \mathbf{h}, \mathbf{A} \rightarrow \mathbf{Z} \mathbf{h}....$

and of course sparticle searches...

7–8 TeV LHC for the lightest h and 13–14 TeV LHC for H/A/H⁺? and maybe some supersymmetric particles will show up?

MPI Munich, 18/06/2013

Implications of the Higgs discovery – A. Djouadi – p.20/25

4. What next?

Even if no sign of BSM physics is seen: is Particle Physics "closed"? No! Need to check that H is indeed responsible of sEWSB (and SM-like?) Measure its fundamental properties in the most precise way:

- its mass and total decay width (invisible width due to dark matter?),
- its spin–parity quantum numbers and check SM prediction for them,
- its couplings to fermions and gauge bosons and check that they are indeed proportional to the particle masses (fundamental prediction!),
- ullet its self–couplings to reconstruct the potential V_{H} that makes EWSB.

Possible for $M_{H}\,{\approx}$ 126 GeV as all production/decay channels useful!

MPI Munich, 18/06/2013

Implications of the Higgs discovery – A. Djouadi – p.21/25

4. What next? Couplings

 c_f

- $\overline{~\bullet}~$ Look at various H production/decay channels and measure $N_{ev}=\sigma\times BR$
- But large errors mainly due to:
- experimental: stats, system., lumi...
- theory: PDFs, HO/scale, jetology... total error about 20–30% in $gg \to H$ Hjj contaminates VBF (now 30%)..
- \Rightarrow ratios of σxBR : many errors out! Deal with width ratios Γ_X/Γ_Y
- TH on σ and some EX errors
- parametric errors in BRs
- TH ambiguities from $\Gamma_{\rm H}^{tot}$
- Achievable accuracy:
- now: 20–30% on $\gamma\gamma/{f VV}, au au/{f VV}$
- future: few % at HL-LHC!

Sufficient to probe BSM physics?

MPI Munich, 18/06/2013

1.05

5. What next? Self-coupling

Challenge: measurement of Higgs self-couplings and access to $V_{\rm H}$.

• g_{H^3} from $pp \rightarrow HH + X \Rightarrow$ • g_{H^4} from $pp \rightarrow 3H+X$, hopeless. Various processes for HH prod: only $gg \rightarrow HHX$ relevant...

Baglio et al., arXiv:1212.5581

MPI Munich, 18/06/2013

– $\mathbf{b}\mathbf{b}\tau\tau,\mathbf{b}\mathbf{b}\gamma\gamma$ viable?

but needs very large luminosity.
 Maybe even needs an ILC.....

Implications of the Higgs discovery – A. Djouadi – p.23/25

4. What next? ILC

 \Rightarrow difficult to be beaten by anything else for \approx 125 GeV Higgs \Rightarrow welcome to the ILC!

MPI Munich, 18/06/2013

Implications of the Higgs discovery – A. Djouadi – p.24/25

4. What next?

We hope that we will finally understand the Higgs mechanism...

... but there is a long way until we get there....

... and there might be many surprises waiting for us...

MPI Munich, 18/06/2013

Implications of the Higgs discovery – A. Djouadi – p.25/25