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1. The Higgs in the Standard Model and beyond
We have a theory, the Standard Model, which describes micros copic world.

the interaction of s= 1
2

matter particles
via exchange of s=1 force particles.
It is based on a gauge symmetry:
SU(3)C×SU(2)L×U(1)Y

• relativistic quantum field theory,
• perturbative, renormalisable,
• and most of all, very successfull:
⇒ infinitely precise predictions,
⇒ high precision experimental tests.
But true only if particles are massless a:
putting naively masses for W/Z/fermions
spoils gauge invariance and therefore
the nice properties of the theory above.
Problem: how to generate particle masses in a gauge invarian t way?
⇒ the Brout–Englert–Higgs mechanism for EW symmetry breakin g!

aThis has nothing to do with mass of macroscopic objects due to binding energy...
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1. The Higgs in the Standard Model and beyond

Introduce a doublet of complex scalar fields Φ=(Φ
+

Φ0 ): 4 degrees of freedom.

Scalar potential: VS=µ2Φ†Φ+λ(Φ†Φ)2, SU(2)L×U(1)Y invariant.
µ2 > 0: minimum of VS at 〈0|Φ0|0〉=0:
4 new scalar particles with mass mS=µ.
µ2 < 0: (via quantum fluctuations?):
the field Φ develops a non–zero vev

〈0|Φ0|0〉= v=
√

−µ2

λ2 (=246 GeV)
fields/interactions still SU(2) ×U(1) symmetric
but vaccum not ⇒ spontaneous EW breaking.
⇒ three d.o.f. for MW± and MZ.
Introduce interaction of fermions with same Φ:
fermions masses mf also generated!
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Residual d.o.f corresponds to spin–0 Higgs particle.
• Unique particle: spin zero, not matter particle and not forc e particle,
• couples to all particles ∝ their masses: gHff ∝mf ,gHVV∝MV,
• couples to itself, gHHH ∝ M2

H with the relation M2
H=2λv2.
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1. The Higgs in the Standard Model and beyond
Since v is known, the only free parameter in the SM is MH (or λ).

Pre–LHC constraints on MH:
• Experimental constraints:
– direct searches at LEP/Tevatron:
MH>114 GeV, MH 6=160 GeV
– quantum effects in EW data:
MH<160 GeV @95% confidence .
• The Higgs unitarizes the theory:
without H: |A0(VV→VV)|∝E2

including H: |A0|∝M2
H/v

2

theory unitary but MH
<∼700 GeV...

• Triviality and stability bounds:
coupling evolves with energy λ ≡ λ(Q2)
λ≫1: becomes infinite (no perturbation)
λ≪1: potential unstable (no EWSB)
Λ ∼ MPl : 120 <∼MH

<∼ 180 GeV!
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1. The Higgs in the Standard Model and beyond
A major problem in the SM: the hierarchy/naturalness proble m.

Radiative corrections to M2
H in SM with a cut–off Λ=MNP∼MPl

fH H∆M2
H ≡ ∝ Λ2 ≈ (1018 GeV)2

MH prefers to be close to the high scale than to the EWSB scale...

Three main avenues for solving the hierarchy problem:
1) Compositness: there is another layer!
all particles are not elementary ones.
Techicolor: like QCD at scale of 1 TeV.
⇒ H bound state of two fermions
⇒ properties 6= from of SM Higgs.
2) Extra space–time dimensions
in which at least gravitons propagate;
effective gravity scale Meff

Pl ≈ΛC≈ TeV
⇒ same Higgs mechanism as in SM,
⇒ but possibility of Higgsless mode!
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1. The Higgs in the Standard Model and beyond

3) Supersymmetry: doubling the world.

• SUSY = most attractive SM extension:
– links s= 1

2
fermions to s=1 bosons

– links internal and space-time symmetry
– if made local, it provides link to gravity
– naturally present in string theory (TOE?)
– natural µ2<0: radiative EWSB
– fixes gauge coupling unification
– ideal candidate for Dark Matter...

• Needs two doublets Φ1,Φ2 for EWSB:
⇒ extended Higgs sector: h,H,A,H± with h⊕H≈HSM

– SUSY ⇒ only two inputs at tree level: tanβ=v2/v1,MA

– SUSY ⇒ hierarchy spectrum: Mh≈100 GeV, MH≈ MA ≈ MH±

(SUSY scale MSUSY pushes via radiative corrections Mh to 130 GeV).
• Most often decoupling regime: h≡HSM, others decouple from W/Z.
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1. The Higgs in the Standard Model and beyond
and along the avenues, many possible streets, paths, corner s...

Which scenario chosen by Nature? The LHC was devised to tell!
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2. The Higgs at the LHC

Physics at hadron machines is a nightmare...
• Protons non–elementary: difficult environment
• Huge cross sections for QCD processes
• Small cross sections for EW Higgs signal

S/B >∼ 1010 ⇒ a needle in a haystack!
• Need some strong selection criteria:
– trigger: get rid of uninteresting events...
– select clean channels: leptons and photons
– use specific kinematic features of Higgs
• Combine # decay/production channels
(and eventually several experiments...)
• Have a precise knowledge of S and B rates
(higher/quantum effects can be factor of 2!)
• Gigantic experimental + theoretical efforts
(more than 30 years of extremely hard work!)
to make sure that the Higgs will not escape!
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2. The Higgs at the LHC
Since v is known, the only free parameter in the SM is MH (or λ).
Once MH known, all the properties of the Higgs boson are fixed.

Example: Higgs decays in the SM
• As gHPP ∝ mP, H will decay into
heaviest particle phase-space allowed:

•MH
<∼ 130 GeV :

– H → bb̄: dominant decay
– H → cc, τ+τ−,gg = O(few%)
– H → γγ,Zγ = O(0.1%)
•MH

>∼ 130 GeV:

– H → WW,ZZ dominant
– decays into tt̄ for heavy Higgs
• Total Higgs decay width:
– very small for a light Higgs
– comparable to mass if heavy

HDECAY ⇒
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2. The Higgs at the LHC
Main Higgs production channels
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Large production cross sections
with gg → H by far dominant process
1 fb−1⇒O(104) events@LHC

⇒O(103) events@Tevatron
but eg BR(H →γγ,ZZ→4ℓ)≈10−3

... a small # of events at the end...
with a huge QCD-jet background.
⇒ an extremely challenging task!
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qq̄→WH

qq→qqH

gg→H
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Main sensitive channels:
gg→H→γγ
gg→H→ZZ→4ℓ,2ℓ2ν,2ℓ2b
gg→H→WW→ℓνℓν+0,1j
also help from other channels:
– VBF+gg→H→ττ
– qq̄→HV →bb̄ℓX
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2. The Higgs at the LHC

Things are even more complicated/challenging in BSM: MSSM c ase
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• More Higgs particles: Φ=h,H,A,H±:
– some couple almost like the SM Higgs,
– but some are more weakly coupled.
• In general same production as in SM
but also new/more complicated processses
(rates can be smaller or larger than in SM).
• Possibility of different decay modes
(and clean decays eg into γγ suppressed)
• Impact of light SUSY particles?
⇒ In general very complicated situation!
But simpler in the decoupling regime:
– h as in SM with Mh=115−130 GeV
– dominant mode: gg,bb̄→H/A→ττ
It is even more tricky in beyond MSSM!
and also in some non–SUSY extensions...
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2. The Higgs at the LHC
... a challenge met the 4th of July, when the Higgs was discove red at LHC.
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3. Implications of the discovery: is it a Higgs?

Spin: the state decays into γγ
• not spin–1: Landau–Yang
• could be spin–2 like graviton? Ellis et al.
– miracle that couplings fit that of H,
– “prima facie” evidence against it:

e.g.: cg 6= cγ, cV ≫ 35cγ
many th. analyses (no suspense).

CP: is it CP–even or CP–odd?

HVµV
µ vs HǫµνρσZµνZρσ

⇒ dΓ(H→ZZ∗)
dM∗

and dΓ(H→ZZ)
dφ

ATLAS/CMS: ≈ 3σ for CP-even..

Problem : if H is CP mixture, only
0+ component is projected out!
(or very large 0 −VV loop cplg).
⇒ better probe: µ̂ZZ=1.1±0.4!
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3. Implications of the discovery: is it a Higgs?

)µSignal strength (
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From ATLAS/CMS results:
Higgs couplings to elementary particles as predicted by Hig gs mechanism:
• couplings to WW,ZZ, γγ roughly as expected for a CP-even Higgs
• couplings proportionial to masses as expected for the Higgs boson
So, it is not only a “new particle”, the “126 GeV boson”, a “new state”...

IT IS A HIGGS BOSON!
But is it THE SM Higgs boson or A Higgs boson from some extension?

To check this you need very precise measurements to see small deviations...
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3. Implications of the discovery: the SM
The Higgs looks like expected in SM ⇒
a triumph for high-energy physics!
Indirect constraints from EW data a

H contributes to RC to W/Z masses:

H
W/Z W/Z

∝ α
π
log MH

MW
+· · ·

Fit the EW precision measurements,
one obtains MH = 92+34

−26 GeV, or

MH
<∼ 160 GeV at 95% CL

compared with the measured mass

MH≈126 GeV.
A very non–trivial consistency check!
(remember the story of the top quark!).
The SM is a very successfull theory!

a Still some problems with Ab
FB (LEP), At

FB (TeV) and g−2 but not severe...
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3. Implications of the discovery: the SM
• The theory preserves unitarity

as we have MH≪700 GeV... V

V

V

V H

• Particle spectrum complete:
Fourth generation excluded by
H → ZZ,WW, γγ,bb rates...

(as well as by direct searches@LHC...)

• Extrapolable up to highest scales.
λ(Q2)
λ(v2)

≈1+ 3
2M4
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t

16π2v4 logQ2

v2

tops make λ<0: unstable vacuum

ΛC∼MPl ⇒ MH
>∼129GeV!

at 2loops for mpole
t =173 GeV.....

(Degrassi et al., Bezrukov et al.)
but what is measured mt value?
• SM = TOE? Maybe not (?):
– mν , DM, GUT OK with extensions
– but about the hierarchy problem?
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3. Implications of the discovery: beyond the SM

• Rates compatible with SM
fit of all data ⇒ OK at ≈ 20%
• No other resonnance found
in many search channels....

Huge implications for BSM!
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Some beyond the SM scenarios are in ‘mortuary”:
• Higgsless models, extreme Technicolor and composite scena rios, ..
• fermiophobic Higgs, gauge-phobic Higgs, 4th generation, . ..
Some beyond the SM scenarios are in “hospital”:
• ‘light” versions of Technicolor and composite models...
• many other extended Higgs scenarios: private, portal, ....
Other BSM scenarios are strongly constrained...

and the best example is Supersymmetry and the MSSM.
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3. Implications of the discovery: the MSSM
In MSSM, two doublets H1,H2 ⇒ 5 physical states: h,H,A,H±

only two parameters at tree–level: tanβ,MA but rad. cor. important:

Mh
<∼MZ|cos2β|+RC<∼130 GeV , MH≈MA≈MH±<∼MEWSB

126 GeV is large for MSSM: ⇒ Mh needs to be maximal from start...

Mh
MA≫MZ→ MZ|cos2β|+ 3m̄4

t

2π2v2sin2 β

[

log
M2

S

m̄2
t

+
X2

t

M2
S

(

1− X2
t

12M2
S

)]

• decoupling regime with MA∼O(TeV); h is SM–like
• large values of tan β >∼ 10 to maximize tree-level value;
• maximal mixing scenario: Xt =

√
6MS;

• heavy stops, i.e. large MS=
√
mt̃1

mt̃2
; but MS

<∼3 TeV....
Scan parameter space with all corrections and full SUSY spec trum
Constrained MSSMs are interesting from model building poin t of view:

– concrete schemes: SSB occurs in hidden sector
gravity,..→ MSSM fields

– provide solutions to some MSSM problems: CP, flavor, etc..
– parameters obey boundary conditions ⇒ small number of inputs...
the protype model is mSUGRA: tan β , m1/2 , m0 , A0 , sign(µ)
full scan of the model parameters with 123 GeV≤Mh≤129 GeV
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3. Implications of the discovery: the MSSM

⇒ SUSY scale rather large... ... backed up by direct searches

especially in constrained MSSMs ... especially squarks/gl uinos...
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3. Implications of the discovery: the MSSM

A 126 GeV Higgs provides information on BSM and SUSY in partic ular:
•MH=119 GeV would have been a boring value: everybody OK..
•MH=145 GeV would be a devastating value: mass extinction..
•MH≈126 GeV is Darwinian: (natural) selection among models..
SUSY spectrum heavy; except maybe for weakly interacting
sparticles and also stops ⇒ more focus on them in SUSY searches!

One has to refine all other MSSM Higgs searches in particular:

• gg,bb → H/A → ττ, µµ
• t → H+b,gg → tH−

•H → WW,ZZ as in SM
• gg,H/A → tt
•H → hh,A → Zh....
and of course sparticle searches...

7–8 TeV LHC for the lightest h and 13–14 TeV LHC for H/A/H +?
and maybe some supersymmetric particles will show up?
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4. What next?
Even if no sign of BSM physics is seen: is Particle Physics “cl osed”?

No! Need to check that H is indeed responsible of sEWSB (and SM -like?)
Measure its fundamental properties in the most precise way:

• its mass and total decay width (invisible width due to dark ma tter?),
• its spin–parity quantum numbers and check SM prediction for them,
• its couplings to fermions and gauge bosons and check that the y are
indeed proportional to the particle masses (fundamental pr ediction!),
• its self–couplings to reconstruct the potential VH that makes EWSB.
Possible for MH≈ 126 GeV as all production/decay channels useful!
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4. What next? Couplings

• Look at various H production/decay
channels and measure Nev = σ ×BR
• But large errors mainly due to:
– experimental: stats, system., lumi...
– theory: PDFs, HO/scale, jetology...
total error about 20–30% in gg → H
Hjj contaminates VBF (now 30%)..
⇒ ratios of σxBR: many errors out!
Deal with width ratios ΓX/ΓY

– TH on σ and some EX errors
– parametric errors in BRs
– TH ambiguities from Γtot

H

• Achievable accuracy:
– now: 20–30% on γγ/VV, ττ/VV
– future: few % at HL–LHC!

Moreau+AD
Sufficient to probe BSM physics?

Baglio+AD
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5. What next? Self–coupling
Challenge: measurement of Higgs self-couplings and access to VH.

• gH3 from pp → HH+X ⇒
• gH4 from pp →3H+X, hopeless.
Various processes for HH prod:
only gg → HHX relevant...
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qq′ → HHqq′

gg → HH

√
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•H → bb̄ decay alone not clean
•H → γγ decay very rare,
•H → ττ would be possible?
•H → WW not useful?
– bbττ,bbγγ viable?
– but needs very large luminosity.

Maybe even needs an ILC.....
MPI Munich, 18/06/2013 Implications of the Higgs discovery – A. Djouadi – p.23/25



4. What next? ILC
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Very precise measurements
mostly at

√
s<∼ 500 GeV

and mainly in e+e− → ZH
(with σ ∝ 1/s) and ZHH, ttH

gHWW ±0.012
gHZZ ±0.012
gHbb ±0.022
gHcc ±0.037
gHττ ±0.033
gHtt ±0.030
λHHH ±0.22
MH ±0.0004
ΓH ±0.061
CP ±0.038

⇒ difficult to be beaten by anything else for ≈ 125 GeV Higgs
⇒ welcome to the ILC!
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4. What next?

We hope that we will finally understand the Higgs mechanism.. .

... but there is a long way until we get there....

... and there might be many surprises waiting for us...
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