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What can be studied if we had another discrimination tool
than arrival direction
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o Galactic and extragalactic
diffuse gamma rays (data
points from Fermi-LAT)

o Extended sources, e.g.
galactic gamma ray halo
from Dark Matter
annihilation or galaxy cluster
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1. Geomagpnetic effect
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2. Height of the
shower maximum
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Small separation power

3. Cherenkov light at

high altitude

Most promising effect
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Cherenkov Light Distribution
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Averaged lateral distribution
of 1000 events for several energies.

o Intensity for gamma shower
is higher than that for
electron shower with the
same energy

o Feature not usable as
shower energy is unknown

o Shape of the lateral
distribution is similar for
both shower types
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Height of the shower maximum

Simulation for CTA

@ 200000 events for each
shower type simulated with
CORSIKA and sim_telarray

o 2000m observation level

o magpnetic field mixture of La
Palma and Namibia

o Configuration E

[G. Perez 2012]
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200000 events for each
shower type simulated with
CORSIKA and sim_telarray

2000m observation level

magnetic field mixture of La
Palma and Namibia

Configuration E

CTA - North CTA - South

[G. Perez 2012]
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Difference decreases
logarithmically with energy

Separation power low even
at optimal range
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Height of the shower maximum
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In contrast to hadronic and
gamma ray events e~ have
not clear first interaction
point

Optimal height may be
around 30 km

DCL arrives in very small
time slot and under small
angle

Backtracking of photons to
height

< 30km
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In contrast to hadronic and
gamma ray events e~ have
not clear first interaction
point

Optimal height may be
around 30 km

DCL arrives in very small
time slot and under small
angle

Backtracking of photons to
height
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o Only take photons arriving
within 3 ns within radius of
90 m around core

o Backtracking of photons to
height zg = 30 km, angular
precision 0.01°

o Integrating photon within

radius of 30 m around mean
value

Q-factor of 9.06 by cutting
after first bin, keeping 20%
gamma events

50% gamma can be kept
with Q-factor of 4.14
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o Separation of /e~ by Hmax is low, maybe FIP advancement, will still be
affected by fluctuations

o Asymmetry due to magnetic field too small, even with perfect detector and
at small energies

o Direct Cherenkov Light is a promising tool for gamma/e~ separation
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Thank you for your kind attention and interest! |
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Difference descrease logaritmically with energy
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Difference of prast — Pivest
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Proof of separation power for 50 GeV showers
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Proof of separation power

% of events
% of events

Integrated projected asymmetry Integrated projected asymmetry

Integration over the histogram for 100 GeV (left) and 200 GeV (right) from right
and left side.
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