Tau leptons identification via an impact parameter measurement in the ATLAS experiment at LHC

Carlo Pandini

Università degli Studi di Milano

18/03/2013

Carlo Pandini (Università di Milano)

summer internship with the Chicago ATLAS group: Optimization of patterns' bank generation

in the Fast Track Trigger FTK for the ATLAS experiment at CERN

 \Longrightarrow very challenging and interesting topic but rather technical and hard to cover in ${\sim}15$ min

 master thesis (work in progress): Search for the H→ ττ process with the ATLAS experiment at LHC

If you are interested we can discuss these other works after the presentation.

 \implies very hot topic: needed to confirm that the new particle found at LHC is actually the source of mass generation \longrightarrow the work is ongoing (preliminary results are still restricted)

IMPRS workshop

All my past research experiences are within the ATLAS experiment, today I will present only a selected topic:

⇒ today talk!

۲

Schematic overview of LHC and the ATLAS detector

Proton-proton hadronic collider designed to achieve:

• CM energy $\sqrt{s} \approx 14$ TeV • istantaneous luminosity $\mathcal{L} \approx 10^{34}$ cm⁻² s⁻¹ Today:

• CM energy $\sqrt{s} \approx 8$ TeV

- istantaneous luminosity $\mathcal{L} \sim 8 \times 10^{33} \ cm^{-2} \ s^{-1}$
- integrated luminosity L (delivered 2012) \sim 29 fb⁻¹

ATLAS: A Toroidal LHC ApparatuS

ATLAS is a multi-purpose detector composed by:

Inner detector

- reconstruction of charged particles tracks
- primary and secondary vertex reconstruction

Calorimeter system

- measurement of electron and jet energy
- ET reconstruction

Muon spectrometer

- muon identification and reconstruction

Tau leptons identification via an impact parameter measurement in the ATLAS experiment at LHC

Overview of the presentation:

Goal: improvement of τ lepton identification using multidimensional analysis MVA and exploiting the impact parameters of the final state muons

- 1 main motivations: SM and beyond SM physics
- physics process studied for au identification: $Z o au au o \mu \mu + ar{
 u_{\mu}}
 u_{ au}
 u_{\mu} ar{
 u_{ au}}$
- 3) discrimination between signal and SM backgrounds
- estimate of systematic uncertainties
- results achieved

Main motivations

SM physics: study of $Z \rightarrow \tau \tau$ process

- complete the study of the Z decay modes in the leptonic channels (ee, $\mu\mu, \tau\tau)$
- study of an important background process for beyond SM physics

• beyond SM physics: study of $H \rightarrow \tau \tau$ process

- confirm the discovery of the Higgs-like boson in the au channel
- probe the coupling of this new particle with fermions
- search for the Higgs boson in supersymmetric extension of the Standard Model

IMPRS workshop

Carlo Pandini (Università di Milano)

Physics process: $Z \rightarrow \tau^+ \tau^- \rightarrow \mu^+ \mu^- + \bar{\nu_\mu} \nu_\tau \nu_\mu \bar{\nu_\tau}$

Well-known physics channel to study the τ lepton identification:

 $Z \rightarrow \tau^+ \tau^- \rightarrow \mu^+ \mu^- + \bar{\nu_\mu} \nu_\tau \nu_\mu \bar{\nu_\tau}$

Main issues:

2
ight] irreducible background with a cross section higher than the signal's one: Z $o \,\mu\mu$

Solutions:

- ⇒ powerful discriminating variable involving the τ leptons intermediate state: μ **impact parameter** (τ mean lifetime $\simeq 0.29ps \Longrightarrow \mu$ with large impact parameter d_0)
- ⇒ cut based analysis has not enough discriminating power→ comparative study of several multivariate analysis methods → best performing MVA

$$d=L_{sin}\psi sin\theta_{\tau}$$

Standard Model backgrounds & Signal preselection

Signal:

Signal process $Z \rightarrow \tau \tau \rightarrow \mu \mu + 4\nu$

Backgrounds:

• Drell-Yan process followed by $Z/\gamma^*
ightarrow \mu\mu$ decay

 \Rightarrow MonteCarlo samples

QCD multijet background

⇒ data-driven technique

Data:

• Subsample of data collected during 2011 with ATLAS: L = $638 \pm 22 \text{ pb}^{-1}$

Signal Preselection	
muon trigger selection	
dilepton selection	2μ with opposite charge
transverse momentum cut	$p_T(\mu_1) > 15 GeV$
	$p_T(\mu_2) > 10 GeV$
invariant mass cut	$25 GeV < m_{\mu\mu} < 65 GeV$

Data-MC agreement	
N _{data}	27140
N _{sianal}	1513
Nbackground	25208
$N_{signal} + N_{background_{EW}}$	26712

MonteCarlo samples: corrections

The MonteCarlo samples have to be corrected to take into account mismodeling of the detector behaviour in the MonteCarlo simulation:

• impact parameter $d(\mu)$ smearing from $Z \rightarrow \mu\mu$ control region:

 \implies Control Region: 75*GeV* < $m_{\mu\mu}$ < 105*GeV* (Z invariant mass peak)

$$\implies$$
 $d_0(MC)' = d_0(MC) + G(\mu, \sigma)$

impact parameter d(µ) smearing from multiple scattering in the detector

• transverse momentum $p_T(\mu)$ smearing

The variable choice is based on the signal events' features:

$$Z
ightarrow au^+ au^-
ightarrow \mu^+ \mu^- + ar{
u_\mu} \;
u_ au \;
u_\mu \; ar{
u_ au}$$

Kinematic variables:

- $\Delta \phi(\mu_1, \mu_2)$
- $\Delta \phi(\mu_1, E_T^{miss})$
- Δp_T(μ₁, μ₂)
- $d_0(\mu_1), d_0(\mu_2)$

- $\Rightarrow M_Z(91 GeV) \gg M_\tau(1, 77 GeV)$ $\Rightarrow \tau \text{ leptons boosted}$
- $\Rightarrow \tau$ decay products almost collinear
- \Rightarrow Z boson produced at low p_T
- \Rightarrow collinear τ decay products back-to-back

 $\Delta\phi(\mu_1,\mu_2)$

The variable choice is based on the signal events' features:

$$Z
ightarrow au^+ au^-
ightarrow \mu^+ \mu^- + ar{
u_\mu} \;
u_ au \;
u_\mu \; ar{
u_ au}$$

Kinematic variables:

- Δφ(μ₁, μ₂)
- $\Delta \phi(\mu_1, E_T^{miss})$
- $\Delta p_T(\mu_1, \mu_2)$
- $d_0(\mu_1), d_0(\mu_2)$

- $\Rightarrow E_T^{miss}$ dominated by the 4 ν contributions
- $\Rightarrow E_T^{miss}$ vector must lay between the two μ leptons in the transverse plane

 $\Delta \phi(\mu_1, E_T^{miss})$

The variable choice is based on the signal events' features:

$$Z \rightarrow \tau^+ \tau^- \rightarrow \mu^+ \mu^- + \bar{\nu_\mu} \ \nu_\tau \ \nu_\mu \ \bar{\nu_\tau}$$

Kinematic variables:

- $\Delta \phi(\mu_1, \mu_2)$
- $\Delta \phi(\mu_1, E_T^{miss})$
- $\Delta p_T(\mu_1, \mu_2)$
- $d_0(\mu_1), d_0(\mu_2)$

- $\Rightarrow \mu \text{ from } Z \rightarrow \mu \mu \text{ less boosted in the} \\ \text{transverse plane wrt } \mu \text{ from} \\ Z \rightarrow \tau \tau \rightarrow \mu \mu 4\nu$
- $\Rightarrow \mu$ from signal events have larger Δp_T wrt μ from background events

 $\Delta p_T(\mu_1,\mu_2)$

The variable choice is based on the signal events' features:

$$Z \rightarrow \tau^+ \tau^- \rightarrow \mu^+ \mu^- + \bar{\nu_\mu} \ \nu_\tau \ \nu_\mu \ \bar{\nu_\tau}$$

Kinematic variables:

- $\Delta \phi(\mu_1, \mu_2)$
- $\Delta \phi(\mu_1, E_T^{miss})$
- Δp_T(μ₁, μ₂)
- $d_0(\mu_1), d_0(\mu_2)$

 $\Rightarrow I \text{ tested several combination of the } \mu$ impact parameters to find the variable with the best discriminating power:

$$\begin{split} & d_0^{(1)} + d_0^{(2)} & d_0^{(1)} - d_0^{(2)} \\ & |d_0^{(1)}| + |d_0^{(2)}| & |d_0^{(1)}| - |d_0^{(2)}| \\ & |d_0^{(1)} + d_0^{(2)}| & |d_0^{(1)} - d_0^{(2)}| \end{split}$$

Signal/Background Multivariate discrimination

Multidimensional methods common features:

- several input variables \rightarrow cut on a single output variable
- correct treatment of the correlation between variables
- first step: training with MonteCarlo samples that reproduce signal and background distributions
- second step: application on data samples to solve a classification/regression problem

I implemented several multidimensional methods using the C TMVA software (ROOT environment), to find the most suitable for this analysis.

Multivariate analysis methods:

- Rectangular cut method
- One-dimensional Likelihood
- Multi-dimensional Likelihood =
- Artificial Neural Network ANN
- Boosted Decision Trees BDT

Efficiency study: how to choose the best working point?

How can I choose the best pair (multivariate method, impact parameter variable)?

Statistical significance $\longrightarrow \frac{S}{\sqrt{B}}$

Efficiency study procedure:

- \Rightarrow find the maximum of $\frac{S}{\sqrt{B}}$: working point
- \Rightarrow compute signal efficiency (ϵ_S) and background rejection (r_B) at the working point
- ⇒ rank (method, variable) pair

IMPRS workshop

PDE-RS - $ d_0^{(1)} + d_0^{(2)} $	
ϵ_{S} [%]	29 ± 2
r _B [%]	$98,6\pm0,\!25$
Working point (cut value)	0,696
$\frac{S}{\sqrt{B}}$	5,29
$\frac{S}{\sqrt{S+B}}$	4,13
S	44
В	68
$S + B \pm \sqrt{S + B}$	112 ± 11
Data	91

- \Rightarrow high background rejection \longrightarrow low signal efficiency
- $\Rightarrow \ \ \, \text{signal} \sim \text{4 times signal+background} \\ \text{statistical fluctuations}$
- \Rightarrow (S+B) in agreement with Data within 2σ (stat.)

The systematic uncertainties considered are associated to the discrepancies between data and MonteCarlo:

- resolution effects on muon impact parameter d₀
- multiple scattering effect on muon impact parameter d₀
- resolution effect on muon transverse momentum p_T

Systematic error for signal efficiency and background rejection:

$$\sigma(\epsilon_{S}, r_{B}) = \sqrt{\sigma^{2}(MS) + \sigma^{2}(p_{T}) + \sigma^{2}(d_{0})}$$

PDE-RS - $ a_0^{(1)} + a_0^{(2)} $		
ϵ_{S} [%]	29 \pm 2 (syst.)	
r _B [%]	98,6 \pm 0,25 (syst.)	

Results achieved

Events distribution vs output variable from multi-dimensional Likelihood method:

Results achieved

Results:

- best MVA method: PDE-RS multi-dimensional Likelihood
- best impact parameter variable: $| d_0^{(1)} | + | d_0^{(2)} |$
- signal efficiency \(\epsilon_S \) ~ 30\%
- background rejection $r_B \sim 99\%$

Possible improvements:

- include the SM electroweak and QCD backgrounds that have been neglected
- QCD multijet background: data-driven estimate not satisfying ⇒ neglected
- repeat the analysis with full statistics and data from 2012

BACKUP SLIDES

Multivariate Analysis

- \longrightarrow multivariate method = multidimensional function n_{var} -dim space \implies 1-dim space
- - → treat correctly the correlation between input variables
 - \longrightarrow the output variable combines the discriminating power of all the input variables
 - → Supervised learning: the method learns by example extracting patterns from training data:

training step (on MonteCarlo samples)

application step (on real data)

Multivariate Analysis: Overtraining

Overtraining \longrightarrow issue for models with too few degrees of freedoms (free parameters):

- the training step is usually repeated until the method satisfy a convergence criteria
- the training can be repeated only a limited number of times before reaching a limit in the performance of the method
- after passing this limit the method is overtrained: his complexity increases but his efficiency is fixed

To avoid/check overtraining, the MonteCarlo samples are splitted in :

- training sample: used only for training
- testing sample: used to test the method after training

⇒ If I get different results between training/test it means that the method is overtrained: it behaves very well on the training sample, but his performance is worse on any other sample (also data!)

Rectangular cut \Rightarrow Set of cuts on the input variables:

- it's the only method that doesn't give a single output variable \Rightarrow direct discrimination between signal and background
- binary output
- no correlation treatment for input variables
- no combination of input variables

Best set of cuts \Longrightarrow choosen with a Genetic Algorithm

Multivariate methods overview: one-dimensional Likelihood

One-dimensional Likelihood \Rightarrow 1-dim probability density functions (one per each input variable)

 $\Rightarrow p_{S(B),k} = pdf$ for the k-variable (S=signal, B=background) - pdfs' shape empirically approximated from training data

$$\Rightarrow$$
 Likelihood function = $L_{S(B)}(i) = \prod_{k=1}^{h_{var}} p_{S(B),k}(x_k(i))$

Discriminating output variable:

$$y_{L(i)} = \frac{L_S(i)}{L_S(i) + L_B(i)}$$

No correlation treatment between input variables.

Multivariate methods overview: multi-dimensional Likelihood

Multi-dimensional Likelihood \Rightarrow n_{var}-dimensional probability density function defined in the input variables' space PDE-Range Search (**PDE-RS**) = pdf estimator that classifies each event after a local estimate of his probability density **PDE-RS estimator**:

$$y_{PDE-RS}(i, V) = \frac{N_B}{n_B(i, V)} \cdot \frac{n_S(i, V)}{N_S}$$

- N_{S,B} = total number of (signal, background) events
- n_{S,B}(i, V) = number of (signal, background) events in the V volume around the i-event in the training sample
- y_{PDE − RS}(i, V) → 1 signal-like events
- y_{PDE-RS}(i, V) → 0 background-like events

Volume choice: adaptive volume

- → little V in the regions with high population in the events space
- \rightarrow big V in the regions with low population in the events space

Events' weight: gaussian weight function

- \rightarrow events at the boudaries have small weight
- \rightarrow their inclusion/exclusion doesn't change too much the value of $y_{PDE-RS}(i, V)$

Multivariate methods overview: Artificial Neural Network

Neural Network ANN \Rightarrow function from n_{var} -dim space to 1-dim space built with a set of interconnected neurons

each neuron is associated with a neuronal function composed by:

- activation function: required for the neuron activation
- synapsis function: it gives the output for each neuron set of inputs
- the output from each neuron is associated with a weight
- ANN training: best set of weight to discriminate between S and B

 \Rightarrow retropropagation algorithm that minimizes the ANN error function

Multivariate methods overview: Boosted Decision Trees

Boosted Decision Trees BDT \Rightarrow set of binary trees that splits the phase space in several regions, labeled as signal- or background-like by counting the number of events in the training samples

- boosted set of trees combined in a single classifier
 - ⇒ better performances
 - \Longrightarrow more stability with respect to fluctuations in the event sample
- trees built from the same training sample with reweighted events
 - ⇒ **Boosting** = reweightening procedure to increase statistical stability and discriminating power
 - \longrightarrow misidentified events with bigger weight

Impact parameter smearing - d_0 resolution

 $Z \longrightarrow \mu \mu$ Control Region: 75*GeV* < $M_{\mu\mu}$ < 105*GeV*

- d₀ distribution for the leading muon in data and Montecarlo
- fit of the distributions with a double gaussian (inner and outer)

Smearing Gaussian Function:

$$\Rightarrow \mu = (w_{i,data} \times \mu_{i,data} + w_{o,data} \times \mu_{o,data}) - (w_{i,MC} \times \mu_{i,MC} + w_{o,MC} \times \mu_{o,MC})$$

$$- w_{i(o),data} = \frac{f(\mu)_{i(o),dati}}{f(\mu)_{i,data} + f(\mu)_{o,data}}$$
(the same for MC)
$$- f(\mu)_{i,dati} = \text{inner gaussian for data distribution evaluated in the mean value}$$

$$\Rightarrow \sigma = \sqrt{\sigma_{dati}^2 - \sigma_{MC}^2}$$
- inner σ from inner gaussian
- outer σ from outer gaussian
- $\rho = \frac{g(d_0)_{i,MC}}{g(d_0)_{i,MC} + g(d_0)_{o,MC}}$ probability for the inner σ

