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Introduction

All my past research experiences are within the ATLAS experiment, today I will present only a selected topic:

bachelor thesis: Tau leptons identification via an impact parameter measurement in the
ATLAS experiment at LHC

=⇒ today talk!

summer internship with the Chicago ATLAS group: Optimization of patterns’ bank generation
in the Fast Track Trigger FTK for the ATLAS experiment at CERN

=⇒ very challenging and interesting topic but rather technical and hard to cover in∼15 min

master thesis (work in progress): Search for the H→ ττ process with the ATLAS experiment
at LHC

=⇒ very hot topic: needed to confirm that the new particle found at LHC is actually the source
of mass generation−→ the work is ongoing (preliminary results are still restricted)

If you are interested we can discuss these other works after the presentation.
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Schematic overview of LHC and the ATLAS detector

Proton-proton hadronic collider designed to
achieve:

CM energy
√

s ≈ 14 TeV

istantaneous luminosity
L ≈ 1034 cm−2 s−1

Today:

CM energy
√

s ≈ 8 TeV

istantaneous luminosity
L ∼ 8× 1033 cm−2 s−1

integrated luminosity L (delivered 2012)∼
29 fb−1
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ATLAS: A Toroidal LHC ApparatuS

ATLAS is a multi-purpose detector composed by:

Inner detector
- reconstruction of charged particles

tracks
- primary and secondary vertex

reconstruction

Calorimeter system
- measurement of electron and jet

energy
- Emiss

T reconstruction

Muon spectrometer
- muon identification and

reconstruction
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Tau leptons identification via an impact parameter
measurement in the ATLAS experiment at LHC

Overview of the presentation:

Goal: improvement of τ lepton identification using multidimensional analysis MVA and exploiting the impact parameters of the
final state muons

1 main motivations: SM and beyond SM physics

2 physics process studied for τ identification: Z → ττ → µµ + ν̄µντνµν̄τ

3 discrimination between signal and SM backgrounds

4 estimate of systematic uncertainties

5 results achieved
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Main motivations

SM physics: study of Z → ττ process

- complete the study of the Z decay modes in the leptonic channels (ee, µµ,
ττ )

- study of an important background process for beyond SM physics

beyond SM physics: study of H → ττ process

- confirm the discovery of the Higgs-like boson in the τ channel

- probe the coupling of this new particle with fermions

- search for the Higgs boson in supersymmetric extension of the
Standard Model
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Physics process: Z → τ+τ− → µ+µ− + ν̄µ ντ νµ ν̄τ

Well-known physics channel to study the τ lepton identification:

Z → τ+τ− → µ+µ− + ν̄µ ντ νµ ν̄τ

Main issues:

1 intermediate state with τ leptons decaying in a muonic final state⇒ no invariant mass peak to exploit for signal
discrimination

2 irreducible background with a cross section higher than the signal’s one: Z → µµ

Solutions:

⇒ powerful discriminating variable involving the τ leptons intermediate state: µ impact parameter
( τ mean lifetime' 0.29ps =⇒ µ with large impact parameter d0 )

⇒ cut based analysis has not enough discriminating power→ comparative study of several multivariate analysis methods
→ best performing MVA
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Standard Model backgrounds & Signal preselection

Signal:

Signal process Z → ττ → µµ + 4ν

Backgrounds:

Drell-Yan process followed by Z/γ∗ → µµ decay

⇒ MonteCarlo samples

QCD multijet background

⇒ data-driven technique

Data:

Subsample of data collected during 2011 with ATLAS: L = 638±
22 pb−1

Signal Preselection
muon trigger selection
dilepton selection 2µ with opposite charge
transverse momentum cut pT (µ1) > 15GeV

pT (µ2) > 10GeV
invariant mass cut 25GeV < mµµ < 65GeV

Data-MC agreement
Ndata 27140
Nsignal 1513
NbackgroundEW

25208
Nsignal + NbackgroundEW

26712
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MonteCarlo samples: corrections

The MonteCarlo samples have to be corrected to take into account mismodeling of the detector behaviour in the MonteCarlo
simulation:

impact parameter d(µ) smearing from Z → µµ control region:

=⇒ Control Region: 75GeV < mµµ < 105GeV (Z invariant mass peak)

=⇒ d0(MC)′ = d0(MC) + G(µ, σ)
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Dati

impact parameter d(µ) smearing from multiple scattering in the detector

transverse momentum pT (µ) smearing
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Input variables for multivariate analysis

The variable choice is based on the signal events’ features:

Z → τ+τ− → µ+µ− + ν̄µ ντ νµ ν̄τ

Kinematic variables:

∆φ(µ1, µ2)

∆φ(µ1, Emiss
T )

∆pT (µ1, µ2)

d0(µ1), d0(µ2)

⇒ MZ (91GeV )� Mτ (1, 77GeV )

⇒ τ leptons boosted

⇒ τ decay products almost collinear

⇒ Z boson produced at low pT

⇒ collinear τ decay products back-to-back

∆φ(µ1, µ2)
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Input variables for multivariate analysis

The variable choice is based on the signal events’ features:

Z → τ+τ− → µ+µ− + ν̄µ ντ νµ ν̄τ

Kinematic variables:

∆φ(µ1, µ2)

∆φ(µ1, Emiss
T )

∆pT (µ1, µ2)

d0(µ1), d0(µ2)

⇒ Emiss
T dominated by the 4ν contributions

⇒ Emiss
T vector must lay between the two µ

leptons in the transverse plane

∆φ(µ1, Emiss
T )
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Input variables for multivariate analysis
The variable choice is based on the signal events’ features:

Z → τ+τ− → µ+µ− + ν̄µ ντ νµ ν̄τ

Kinematic variables:

∆φ(µ1, µ2)

∆φ(µ1, Emiss
T )

∆pT (µ1, µ2)

d0(µ1), d0(µ2)

⇒ µ from Z → µµ less boosted in the
transverse plane wrt µ from
Z → ττ → µµ4ν

⇒ µ from signal events have larger ∆pT wrt
µ from background events

∆pT (µ1, µ2)
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Input variables for multivariate analysis
The variable choice is based on the signal events’ features:

Z → τ+τ− → µ+µ− + ν̄µ ντ νµ ν̄τ

Kinematic variables:

∆φ(µ1, µ2)

∆φ(µ1, Emiss
T )

∆pT (µ1, µ2)

d0(µ1), d0(µ2)

⇒ I tested several combination of the µ
impact parameters to find the variable with
the best discriminating power:

d(1)
0 + d(2)

0 d(1)
0 − d(2)

0

|d(1)
0 | + |d(2)

0 | |d(1)
0 | − |d

(2)
0 |

|d(1)
0 + d(2)

0 | |d(1)
0 − d(2)

0 |
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Signal/Background Multivariate discrimination

Multidimensional methods common features:

- several input variables→ cut on a single output variable

- correct treatment of the correlation between variables

- first step: training with MonteCarlo samples that reproduce signal and background distributions

- second step: application on data samples to solve a classification/regression problem

I implemented several multidimensional methods using the software (ROOT environment), to find the most suitable
for this analysis.

Multivariate analysis methods:

Rectangular cut method

One-dimensional Likelihood

Multi-dimensional Likelihood =⇒

Artificial Neural Network ANN

Boosted Decision Trees BDT
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Efficiency study: how to choose the best working
point?
How can I choose the best pair (multivariate method, impact parameter variable)?

Statistical significance −→
S
√

B

Efficiency study procedure:

⇒ find the maximum of
S
√

B
: working point

⇒ compute signal efficiency (εS ) and background rejection (rB ) at the working point

⇒ rank (method, variable) pair

PDERS response
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TMVA response for classifier: PDERS

Results

Multivariate method: multi-dimensional Likelihood estimator PDE-RS

Impact parameter variable: |d(1)
0 | + |d(2)

0 |
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Results achieved

PDE-RS - | d(1)
0 | + | d(2)

0 |

εS [%] 29± 2

rB [%] 98,6± 0,25

Working point (cut value) 0,696

S√
B

5,29

S√
S+B

4,13

S 44

B 68

S + B±
√

S + B 112± 11

Data 91

⇒ high background rejection−→ low signal
efficiency

⇒ signal∼ 5 times background statistical
fluctuations

⇒ signal∼ 4 times signal+background
statistical fluctuations

⇒ (S+B) in agreement with Data within 2σ
(stat.)
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Systematic Uncertainties

The systematic uncertainties considered are associated to the discrepancies between data and MonteCarlo:

resolution effects on muon impact parameter d0

multiple scattering effect on muon impact parameter d0

resolution effect on muon transverse momentum pT

Systematic error for signal efficiency and background rejection:

σ(εS , rB) =
√
σ2(MS) + σ2(pT ) + σ2(d0)

PDE-RS - | d(1)
0 | + | d(2)

0 |

εS [%] 29± 2 (syst.)

rB [%] 98,6± 0,25 (syst.)
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Results achieved
Events distribution vs output variable from multi-dimensional Likelihood method:
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Results achieved

Results:

best MVA method: PDE-RS multi-dimensional Likelihood

best impact parameter variable: | d(1)
0 | + | d(2)

0 |

signal efficiency εS ∼ 30%

background rejection rB ∼ 99%

Possible improvements:

include the SM electroweak and QCD backgrounds that have been neglected

QCD multijet background: data-driven estimate not satisfying⇒ neglected

repeat the analysis with full statistics and data from 2012
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BACKUP SLIDES
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Multivariate Analysis

−→ multivariate method = multidimensional function
nvar -dim space =⇒ 1-dim space

−→ combine all input variables into one output variable

−→ treat correctly the correlation between input variables

−→ the output variable combines the discriminating power of all the input
variables

−→ Supervised learning: the method learns by example extracting
patterns from training data:

1 training step (on MonteCarlo samples)

2 application step (on real data)
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Multivariate Analysis: Overtraining
Overtraining−→ issue for models with too few degrees of freedoms (free parameters):

the training step is usually repeated until the method satisfy a convergence criteria

the training can be repeated only a limited number of times before reaching a limit in the performance of the method

after passing this limit the method is overtrained: his complexity increases but his efficiency is fixed

To avoid/check overtraining, the MonteCarlo samples are splitted in :

training sample: used only for training

testing sample: used to test the method after training

=⇒ If I get different results between training/test it means that the method is overtrained: it behaves very well on the training
sample, but his performance is worse on any other sample (also data!)
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Multivariate methods overview: Rectangular cut

Rectangular cut⇒ Set of cuts on the input variables:

it’s the only method that doesn’t give a single output variable⇒ direct discrimination between signal and background

binary output

no correlation treatment for input variables

no combination of input variables

Best set of cuts =⇒ choosen with a Genetic Algorithm
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Multivariate methods overview: one-dimensional
Likelihood

One-dimensional Likelihood⇒ 1-dim probability density functions (one per each input variable)

⇒ pS(B),k = pdf for the k-variable (S=signal, B=background) - pdfs’ shape empirically approximated from training data

⇒ Likelihood function = LS(B)(i) =
∏nvar

k=1 pS(B),k (xk (i))

Discriminating output variable:

yL(i) =
LS(i)

LS(i) + LB(i)

No correlation treatment between input variables.
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Multivariate methods overview: multi-dimensional
Likelihood
Multi-dimensional Likelihood⇒ nvar -dimensional probability density function defined in the input variables’ space

PDE-Range Search (PDE-RS) = pdf estimator that classifies each event after a local estimate of his probability density

PDE-RS estimator:

yPDE−RS (i, V ) =
NB

nB(i, V )
·

nS (i, V )

NS

- NS,B = total number of (signal, background) events

- nS,B(i, V ) = number of (signal, background) events in the V volume around the i-event in the training sample

- yPDE−RS (i, V ) −→ 1 signal-like events

- yPDE−RS (i, V ) −→ 0 background-like events

Volume choice: adaptive volume

→ little V in the regions with high population in the events space

→ big V in the regions with low population in the events space

Events’ weight: gaussian weight function

→ events at the boudaries have small weight

→ their inclusion/exclusion doesn’t change too much the value of yPDE−RS (i, V )
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Multivariate methods overview: Artificial Neural
Network

Neural Network ANN⇒ function from nvar -dim space to 1-dim space built with a set of interconnected neurons

each neuron is associated with a neuronal function
composed by:

- activation function: required for the neuron
activation

- synapsis function: it gives the output for each
neuron set of inputs

the output from each neuron is associated with a weight

ANN training: best set of weight to discriminate between
S and B

⇒ retropropagation algorithm that minimizes the
ANN error function

Carlo Pandini (Università di Milano) IMPRS workshop 18/03/2013 26 / 28



Multivariate methods overview: Boosted Decision
Trees

Boosted Decision Trees BDT⇒ set of binary trees that splits the phase space in several regions, labeled as signal- or
background-like by counting the number of events in the training samples

boosted−→ set of trees combined in a single classifier

=⇒ better performances

=⇒ more stability with respect to fluctuations in the
event sample

trees built from the same training sample with
reweighted events

=⇒ Boosting = reweightening procedure to increase
statistical stability and discriminating power

−→ misidentified events with bigger weight
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Impact parameter smearing - d0 resolution
Z −→ µµ Control Region: 75GeV < Mµµ < 105GeV

d0 distribution for the leading muon in data and Montecarlo

fit of the distributions with a double gaussian (inner and outer)

Smearing Gaussian Function:

⇒ µ = (wi,data × µi,data + wo,data × µo,data) − (wi,MC × µi,MC + wo,MC × µo,MC )

- wi(o),data =
f (µ)i(o),dati

f (µ)i,data + f (µ)o,data
(the same for MC)

- f (µ)i,dati = inner gaussian for data distribution evaluated in the mean value

⇒ σ =
√
σ2

dati − σ
2
MC

- inner σ from inner gaussian
- outer σ from outer gaussian

- p =
g(d0)i,MC

g(d0)i,MC + g(d0)o,MC
probability for the inner σ

d0_1 [mm]
-0.1 -0.05 0 0.05 0.1

en
tr

ie
s

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000 MonteCarlo without d0 smearing

MonteCarlo with d0 smearing

Dati

Carlo Pandini (Università di Milano) IMPRS workshop 18/03/2013 28 / 28


