Non–Abelian discrete R symmetries

IMPRS, München

Andreas Trautner

in collaboration with: Prof. M.-C. Chen (UCI), Prof. M. Ratz (TUM)

18.3.13

Non-Abelian discrete R symmetries, 18.3.13

This work is based on my Diploma thesis and will be published soon.

Outline

Basics

What is an *R* symmetry? Motivation for *R* symmetries

Superpotential and discrete symmetries

R symmetry solution to the μ Problem Discrete flavor symmetries

Non–Abelian discrete R symmetries

Symmetry scan A minimal example model Spontaneous CP violation

Conclusion

What is an R symmetry?

Internal symmetry that does not commute with SUSY

SUSY:

$$\begin{array}{ll} Q \left| {\rm Boson} \right\rangle & = \left| {\rm Fermion} \right\rangle \;, \\ Q \left| {\rm Fermion} \right\rangle & = \left| {\rm Boson} \right\rangle \;. \end{array}$$

In general: Q_i (i = 1, ..., N) can be charged under any internal symmetry B, i.e.

$$[Q_i, B] = (b)_i^j Q_j.$$

If so, we call B an R symmetry.

 \Leftrightarrow Does not commute with SUSY.

⇔ Superpartners charged differently.

throughout this talk: $\mathcal{N} = 1$ SUSY.

R symmetries in superspace

Chiral 'superfield' $\Phi \supset (\phi, \psi, F)$ on 'superspace' $(x, \theta, \theta^{\dagger})$. For a global R symmetry:

$$\Phi \to e^{iq_{\Phi}\alpha}\Phi, \quad \theta \to e^{iq_{\theta}\alpha}\theta.$$

For \mathcal{L} being invariant under the symmetry, the superpotential $\mathcal{W}(\Phi_i)$ itself has to be charged, since:

$$\mathcal{L}(x) \supset \int \underbrace{d^2\theta}_{\to e^{-i2q_{\theta}\alpha}} \underbrace{\mathcal{W}(\Phi_i)}_{\Rightarrow e^{i2q_{\theta}\alpha}} + \text{c.c.} \; .$$

This is the main distinction to non-R symmetries.

Motivation for R symmetries

Why are R symmetries interesting?

- Tight connection to SUSY breaking.[Nelson and Seiberg, 1994]
- 'Natural' solution to the μ problem with R symmetries.
- Not available in 4D GUTs. [Fallbacher et al., 2011]
 - But: Lorentz invariance of compact extra dimensions can lead to (anomaly free, discrete) R symmetries in 4D effective theory. e.g. [Lee et al., 2011b]
 - And: there are string theory examples which can reproduce the exact MSSM spectrum + discrete R symmetries at low energies. [Kappl et al., 2011]
- Instrumental in many aspects of model building (e.g. flavon VEV alignement).

The MSSM superpotential, with effective B–L violating terms up to mass dimension 5:

$$\begin{split} \mathcal{W} &= \mu H_{u} H_{d} + \kappa_{i} L_{i} H_{u} \\ &+ Y_{e}^{ij} H_{d} L_{i} E_{j} + Y_{d}^{ij} H_{d} Q_{i} \bar{D}_{j} + Y_{u}^{ij} H_{u} Q_{i} \bar{U}_{j} \\ &+ \lambda_{ijk}^{(1)} L_{i} L_{j} \bar{E}_{k} + \lambda_{ijk}^{(2)} L_{i} Q_{j} \bar{D}_{k} + \lambda_{ijk}^{(3)} \bar{U}_{i} \bar{D}_{j} \bar{D}_{k} \\ &+ \kappa_{ijkl}^{(1)} Q_{i} Q_{j} Q_{k} L_{l} + \kappa_{ijkl}^{(2)} \bar{U}_{i} \bar{U}_{j} \bar{D}_{k} \bar{E}_{l} \\ &+ \kappa_{ijk}^{(3)} Q_{i} Q_{j} Q_{k} H_{d} + \kappa_{ijk}^{(4)} Q_{i} \bar{U}_{j} \bar{E}_{k} H_{d} + \kappa_{i}^{(5)} L_{i} H_{u} H_{u} H_{d} \\ &+ \kappa_{ij}^{(6)} L_{i} H_{u} L_{j} H_{u}. \end{split}$$

- Severely constrained by absence of proton decay.
- Prohibited by R parity.
- Unexplained small.

The MSSM superpotential, with effective B–L violating terms up to mass dimension 5:

$$\begin{split} \mathcal{W} &= \mu H_{u} H_{d} + \kappa_{i} L_{i} H_{u} \\ &+ Y_{e}^{ij} H_{d} L_{i} E_{j} + Y_{d}^{ij} H_{d} Q_{i} \bar{D}_{j} + Y_{u}^{ij} H_{u} Q_{i} \bar{U}_{j} \\ &+ \lambda_{ijk}^{(1)} L_{i} L_{j} \bar{E}_{k} + \lambda_{ijk}^{(2)} L_{i} Q_{j} \bar{D}_{k} + \lambda_{ijk}^{(3)} \bar{U}_{i} \bar{D}_{j} \bar{D}_{k} \\ &+ \kappa_{ijkl}^{(1)} Q_{i} Q_{j} Q_{k} L_{l} + \kappa_{ijkl}^{(2)} \bar{U}_{i} \bar{U}_{j} \bar{D}_{k} \bar{E}_{l} \\ &+ \kappa_{ijk}^{(3)} Q_{i} Q_{j} Q_{k} H_{d} + \kappa_{ijk}^{(4)} Q_{i} \bar{U}_{j} \bar{E}_{k} H_{d} + \kappa_{i}^{(5)} L_{i} H_{u} H_{u} H_{d} \\ &+ \kappa_{ij}^{(6)} L_{i} H_{u} L_{j} H_{u}. \end{split}$$

- Severely constrained by absence of proton decay.
- Prohibited by R parity.
- Unexplained small.

The MSSM superpotential, with effective B–L violating terms up to mass dimension 5:

$$\begin{split} \mathcal{W} &= \mu H_{u} H_{d} + \kappa_{i} L_{i} H_{u} \\ &+ Y_{e}^{ij} H_{d} L_{i} E_{j} + Y_{d}^{ij} H_{d} Q_{i} \bar{D}_{j} + Y_{u}^{ij} H_{u} Q_{i} \bar{U}_{j} \\ &+ \lambda_{ijk}^{(1)} L_{i} L_{j} \bar{E}_{k} + \lambda_{ijk}^{(2)} L_{i} Q_{j} \bar{D}_{k} + \lambda_{ijk}^{(3)} \bar{U}_{i} \bar{D}_{j} \bar{D}_{k} \\ &+ \kappa_{ijkl}^{(1)} Q_{i} Q_{j} Q_{k} L_{l} + \kappa_{ijkl}^{(2)} \bar{U}_{i} \bar{U}_{j} \bar{D}_{k} \bar{E}_{l} \\ &+ \kappa_{ijk}^{(3)} Q_{i} Q_{j} Q_{k} H_{d} + \kappa_{ijk}^{(4)} Q_{i} \bar{U}_{j} \bar{E}_{k} H_{d} + \kappa_{i}^{(5)} L_{i} H_{u} H_{u} H_{d} \\ &+ \kappa_{ij}^{(6)} L_{i} H_{u} L_{j} H_{u}. \end{split}$$

- Severely constrained by absence of proton decay.
- Prohibited by R parity.
- Unexplained small.

The MSSM superpotential, with effective B–L violating terms up to mass dimension 5:

$$\begin{split} \mathcal{W} &= \mu H_{u} H_{d} + \kappa_{i} L_{i} H_{u} \\ &+ Y_{e}^{ij} H_{d} L_{i} E_{j} + Y_{d}^{ij} H_{d} Q_{i} \bar{D}_{j} + Y_{u}^{ij} H_{u} Q_{i} \bar{U}_{j} \\ &+ \lambda_{ijk}^{(1)} L_{i} L_{j} \bar{E}_{k} + \lambda_{ijk}^{(2)} L_{i} Q_{j} \bar{D}_{k} + \lambda_{ijk}^{(3)} \bar{U}_{i} \bar{D}_{j} \bar{D}_{k} \\ &+ \kappa_{ijkl}^{(1)} Q_{i} Q_{j} Q_{k} L_{l} + \kappa_{ijkl}^{(2)} \bar{U}_{i} \bar{U}_{j} \bar{D}_{k} \bar{E}_{l} \\ &+ \kappa_{ijk}^{(3)} Q_{i} Q_{j} Q_{k} H_{d} + \kappa_{ijk}^{(4)} Q_{i} \bar{U}_{j} \bar{E}_{k} H_{d} + \kappa_{i}^{(5)} L_{i} H_{u} H_{u} H_{d} \\ &+ \kappa_{ij}^{(6)} L_{i} H_{u} L_{j} H_{u}. \end{split}$$

- Severely constrained by absence of proton decay.
- Prohibited by R parity.
- Unexplained small.

- 'Natural' solution: smallness of μ explained by symmetry.['t Hooft, 1980]
- Requiring:
 - Gauge coupling unification,
 - Anomaly freedom (allowing for Green-Schwarz mechanism),
 - ⇒ Only *R* symmetries can prohibit μ term.[Babu et al., 2003] There is a *unique* SO(10) commuting solution: \mathbb{Z}_4^R .

[Lee et al., 2011a, Chen et al., 2012]

- The \mathbb{Z}_4^R is broken non–pertubatively and one finds $\mu \sim m_{SUSY} \sim m_{3/2} \Rightarrow \mu$ problem solved.
- Also: $\kappa^{(1)}, \kappa^{(2)} \sim \frac{m_{3/2}}{M_P^2} \Rightarrow$ proton decay under control.
- R parity is contained as an unbroken \mathbb{Z}_2 subgroup of the \mathbb{Z}_4^R .
- Yukawa couplings and (effective) neutrino mass still allowed.

Other discrete Symmetries?

Discrete flavor symmetries:

• Typically: non-Abelian discrete symmetry used as flavor symmetries $G_{\rm f}$, e.g. S_3, A_4, T', \ldots

```
\begin{split} \mathcal{W} &= \mu H_u H_d + \kappa_i L_i H_u \\ &+ Y_e^{ij} H_d L_i E_j + Y_d^{ij} H_d Q_i \bar{D}_j + Y_u^{ij} H_u Q_i \bar{U}_j \\ &+ \lambda_{ijk}^{(1)} L_i L_j \bar{E}_k + \dots \\ &+ \dots \\ &+ \dots \\ &+ \kappa_{ij}^{(6)} L_i H_u L_j H_u. \end{split}
```

Other discrete Symmetries?

Discrete flavor symmetries:

- Typically: non-Abelian discrete symmetry used as flavor symmetries $G_{\rm f}$, e.g. S_3, A_4, T', \ldots
- Spontaneous breaking of $G_{\rm f}$ by (MS)SM singlets ('flavons')
- To obtain mixing patterns (e.g. tri-bi-maximal), VEV alignment is crucial.

- For the dynamical generation of VEV alignment, there are two ways known:
 - $\mathrm{U}(1)_R$,[Altarelli and Feruglio, 2006]
 - compact extra dimensions. [Altarelli and Feruglio, 2005]

Discrete symmetries of the superpotential

$$\begin{split} \mathcal{W} &= \mu H_u H_d + \kappa_i L_i H_u \\ &+ Y_e^{ij} H_d L_i E_j + Y_d^{ij} H_d Q_i \bar{D}_j + Y_u^{ij} H_u Q_i \bar{U}_j \\ &+ \lambda_{ijk}^{(1)} L_i L_j \bar{E}_k + \lambda_{ijk}^{(2)} L_i Q_j \bar{D}_k + \lambda_{ijk}^{(3)} \bar{U}_i \bar{D}_j \bar{D}_k \\ &+ \kappa_{ijkl}^{(1)} Q_i Q_j Q_k L_l + \kappa_{ijkl}^{(2)} \bar{U}_i \bar{U}_j \bar{D}_k \bar{E}_l \\ &+ \kappa_{ijk}^{(3)} Q_i Q_j Q_k H_d + \kappa_{ijk}^{(4)} Q_i \bar{U}_j \bar{E}_k H_d + \kappa_i^{(5)} L_i H_u H_u H_d \\ &+ \kappa_{ij}^{(6)} L_i H_u L_j H_u. \end{split}$$

- Mainly affected by discrete flavor symmetry.
- Mainly affected by discrete R symmetry.
- ? Can we combine the discrete symmetries ?

Non–Abelian discrete
+ discrete
$$R$$
 \Rightarrow Non–Abelian discrete R symmetry.

Non–Abelian discrete R symmetries

- We require the symmetry to:
 - Contain the succesfull \mathbb{Z}_4^R solution of the μ problem,
 - Act non-trivially in flavor space.
- In order not to break SUSY at the flavor scale, the *R* symmetry needs to overstay the flavor symmetry breaking.
 - From mixing phenomenology: unbroken \mathbb{Z}_4^R cannot be family dependent.
 - \Rightarrow Only possible way: \mathbb{Z}_4^R lies in the center of the non–Abelian group!

GAP scan:

$\mathcal{O}(G)$	G_{f}
24	$\mathbb{Z}_3 \rtimes \mathbb{Z}_8$
24	$S_3 \times \mathbb{Z}_4$
32	$(\mathbb{Z}_8 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2$
32	$(\mathbb{Z}_4 \times \mathbb{Z}_4) \rtimes \mathbb{Z}_2$
32	$\mathbb{Z}_8 \rtimes \mathbb{Z}_4$

A $\mathbb{Z}_3 \rtimes \mathbb{Z}_8^R$ minimal example model

The group $\mathbb{Z}_3 \rtimes \mathbb{Z}_8$:

- 8 singlet and 4 doublet representations 1_{1-8} , 2_{1-4} . $\mathbb{Z}_{4} \stackrel{\mathbb{Z}_{3} \rtimes \mathbb{Z}_{8}}{\stackrel{\swarrow}{\swarrow}} (\mathbf{1}_{2}\rangle, \langle \mathbf{2}_{2}\rangle \stackrel{\swarrow}{\checkmark} \langle \mathbf{2}_{2}\rangle \propto (1,1)$
- Possible breaking:

Minimal example model:

- Just one set of SSB flavons: ϕ in $\mathbf{1}_2$, χ in $\mathbf{2}_2$.
- Neutrino masses from (effective) Weinberg operator.
- Spare any additional 'shaping' symmetries (commonly used to generate hierarchies and split quarks & leptons).
- \Rightarrow Do not expect perfect phenomenology, but able to discuss general issues such as:
 - Consistent assignment of fields to representations,
 - Symmetry breaking,
 - Calculation of leading order mass matrices,
 - discussion of \mathcal{CP} .
 - anomaly cancellation.

A $\mathbb{Z}_3 \rtimes \mathbb{Z}_8^R$ minimal example model

The possible assignments are fixed by the assignment of the underlying \mathbb{Z}_4^R .

• \mathbb{Z}_4^R charges: heta and matter: 1, Higgses: 0.[Chen et al., 2012]

$$\Rightarrow \theta \text{ in } \mathbf{1}_5 \text{ or } \mathbf{1}_8,$$

Matter in $\mathbf{1}_5, \mathbf{1}_8 \text{ or } \mathbf{2}_4,$
Higgses in $\mathbf{1}_1$ and $\mathbf{1}_2.$

- Assuming SU(5) GUT compability and neglecting 'anarchic' assignments: 24 possible assignments.
- One example:

$\left(Q, \bar{U}, \overline{E}\right)_{1,2}$	$\left(Q,\bar{U},\bar{E}\right)_3$	$\left(L,\bar{D}\right)_{1,2}$	$\left(L,\bar{D}\right)_3$	H_u	H_d	x	ϕ	θ
1_8	1_5	2_4	1_5	1_1	1_2	2_2	1_2	1_5

As usual: $(Q_i, \overline{U}_i, \overline{E}_i) = \mathbf{10}, (L_i, \overline{D}_i) = \mathbf{\overline{5}}$ of SU(5)

A $\mathbb{Z}_3 \rtimes \mathbb{Z}_8^R$ minimal example model

Spontaneous symmetry breaking:

• Assume VEVs:

$$\langle \chi \rangle \; = \; v \, \begin{pmatrix} \cos heta_\chi \\ \sin heta_\chi \end{pmatrix} \quad \text{and} \quad \langle \phi
angle \; = \; v \, r_\phi \; ,$$

in general: no alignment necessary for $G_{\rm f} \rightarrow \mathbb{Z}_4^R$.

- Identify terms consistent with all symmetries (W charged!).
- \sim Yukawa coupling (mass) matrix structures

$$\begin{split} Y_e \sim Y_d^T \sim \begin{pmatrix} \varepsilon \delta & \varepsilon & 1 \\ \varepsilon \delta & \varepsilon & 1 \\ \varepsilon & \varepsilon \delta & \varepsilon \end{pmatrix}, Y_u \sim \begin{pmatrix} 1 & 1 & \varepsilon \\ 1 & 1 & \varepsilon \\ \varepsilon & \varepsilon & 1 \end{pmatrix}, M_\nu \sim \begin{pmatrix} \varepsilon & \varepsilon \delta & \varepsilon \delta \\ \varepsilon \delta & \varepsilon & \varepsilon \\ \varepsilon \delta & \varepsilon & 1 \end{pmatrix}, \\ \text{with } \varepsilon := v/\Lambda \text{ and } \delta := \theta_\chi - \pi/4 \end{split}$$

Model features:

- 28 model parameters for (max.) 22 physical parameters (no shaping symmetries and no GUT relations used so far).
- Anomaly free by Green–Schwarz mechanism.

Andreas Trautner

Spontaneous CP violation

Generalized CP transformation (gCP):

• \equiv Usual CP trafo + non-trivial permutation of fields

$$\Phi \xrightarrow{\mathrm{gCP}} V \Phi^*$$
,

- gCP transformations represented by the *outer automorphism* group 'Out' of a flavor symmetry. [Holthausen et al., 2012] ('Out' is the symmetry of the character table)
- Out(Z₃ ⋊ Z₈^R) = Z₂ × Z₂, in our model: *both* Z₂'s are broken explicitly and maximally.
- But: the combined transformation *can* be conserved.
- gCP is conserved (by assumption) ⇔ phase relations for Yukawa couplings.
- Crucial: the gCP trafo includes a swap symmetry χ₁ ↔ χ₂, this symmetry is spontaneously broken by a misaligned VEV.
- From mixing and GP: VEV has to be misaligned!

Spontaneous CP violation

Check this statement numerically (e.g. for quark sector):

five random set of parameters with $y \in [0.01 \dots 0.5], \ \varepsilon = 0.2$.

Non–Abelian discrete R symmetries, 18.3.13

Conclusion

- We have introduced non–Abelian discrete R symmetries in the framework of $\mathcal{N}=1$ SUSY GUTs.
- A search for viable symmetries that include
 - solution to the μ and proton decay problem of the MSSM,
 - possible explanation of the flavor structure,

reveals $\mathbb{Z}_3\rtimes\mathbb{Z}_8^R$ as the smallest possible group with non–trivial embedding of the R symmetry.

- Generic features of such models are:
 - the Abelian ${\boldsymbol R}$ symmetry lies in the center of the group,
 - VEVs have to be misaligned to explain family mixing and CP.

Outlook:

- The construction of possibly realistic models seems feasible. In such models, one can discuss:
 - The dynamics of the spontaneous symmetry breaking,
 - Implications for SUSY, i.e. scalar sector soft masses,
 - Possible UV origin of the symmetry.

Thank You!

Bibliography I

Altarelli, G. and Feruglio, F. (2005).

Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions. *Nucl.Phys.*, B720:64–88, hep-ph/0504165.

Altarelli, G. and Feruglio, F. (2006).

Tri-bimaximal neutrino mixing, A(4) and the modular symmetry. *Nucl.Phys.*, B741:215–235, hep-ph/0512103.

Babu, K. S., Gogoladze, I., and Wang, K. (2003).

Natural r-parity, mu-term, and fermion mass hierarchy from discrete gauge symmetries. *Nucl. Phys.*, B660:322–342, hep-ph/0212245.

Chen, M.-C., Ratz, M., Staudt, C., and Vaudrevange, P. K. (2012).

The mu Term and Neutrino Masses. Nucl. Phys., B866:157-176, 1206.5375.

Fallbacher, M., Ratz, M., and Vaudrevange, P. K. (2011).

No-go theorems for R symmetries in four-dimensional GUTs. *Phys.Lett.*, B705:503–506, 1109.4797.

Holthausen, M., Lindner, M., and Schmidt, M. A. (2012).

CP and Discrete Flavour Symmetries. 1211.6953.

Kappl, R., Petersen, B., Raby, S., Ratz, M., Schieren, R., and Vaudrevange, P. K. (2011). String-derived MSSM vacua with residual R symmetries.

Nucl. Phys., B847:325-349, 1012.4574.

Bibliography II

Lee, H. M., Raby, S., Ratz, M., Ross, G. G., Schieren, R., Schmidt-Hoberg, K., and Vaudrevange, P. K. (2011a).

A unique Z_4^R symmetry for the MSSM. *Phys.Lett.*, B694:491–495, 1009.0905.

Lee, H. M., Raby, S., Ratz, M., Ross, G. G., Schieren, R., Schmidt-Hoberg, K., and Vaudrevange, P. K. (2011b).

Discrete R symmetries for the MSSM and its singlet extensions. *Nucl.Phys.*, B850:1–30, 1102.3595.

Nelson, A. E. and Seiberg, N. (1994).

R symmetry breaking versus supersymmetry breaking. *Nucl. Phys.*, B416:46–62, hep-ph/9309299.

't Hooft, G. (1980).

Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. NATO Adv. Study Inst. Ser. B Phys., 59:135.

Backup slides

R symmetries in superspace

Chiral 'superfield' $\Phi \supset (\phi, \psi, F)$ on 'superspace' $(y^{\mu}, \theta^{\alpha}, \theta^{\dagger}_{\dot{\alpha}})$

- $\theta^{\alpha}, \theta^{\dagger}_{\dot{\alpha}}$ fermionic coordinates Grassmann numbers ($\alpha = 1, 2$),
- $\Phi = \Phi(y, \theta, \theta^{\dagger}) = \phi(y) + \sqrt{2}\theta\psi(y) + \theta\theta F(y)$,

For a global R symmetry:

$$\Phi \to \mathrm{e}^{iq_{\Phi}\alpha}\Phi, \quad \theta \to \mathrm{e}^{iq_{\theta}\alpha}\theta.$$

This implies

$$\phi \to e^{iq_{\Phi}\alpha}\phi, \ \psi \to e^{i(q_{\Phi}-q_{\theta})\alpha}\psi, \ F \to e^{i(q_{\Phi}-2q_{\theta})\alpha}F,$$

i.e. superpartners are charged differently.

Anomaly constraints for non–Abelian discrete *R* symmetries

Chiral superfields $\Phi^{(s)}$ transforming

• in representation $d^{(s)}$ of a non-Abelian discrete R symmetry D,

for
$$\Phi^{(s)} \rightarrow U_{\mathsf{a}}(\boldsymbol{d}^{(s)}) \Phi^{(s)} = e^{2\pi i \lambda_{\mathsf{a}}(\boldsymbol{d}^{(s)})/M} \Phi^{(s)}$$

we define
$$\delta_{\mathsf{a}}^{(f)} := \operatorname{tr}[\lambda_{\mathsf{a}}(\boldsymbol{d}^{(f)})] = \frac{M}{2\pi \,\mathrm{i}} \ln \,\det \, U_{\mathsf{a}}(\boldsymbol{d}^{(f)}) \,.$$

- with charge $Q^{(s)}$ under Abelian factors of a gauge group G,
- in representation $r^{(s)}$ under non-Abelian factors of G.

Anomaly coefficients of the a–generated subgroup \mathbb{Z}_M of D are given as

$$\begin{split} A_{G-G-\mathbb{Z}_{M(\mathfrak{s})}^{R}} &= \sum_{s} \ell(\boldsymbol{r}^{(s)}) \cdot \left[\delta^{(s)} - \dim(\boldsymbol{d}^{(s)}) \,\delta^{(\theta)}\right] + \ell(\operatorname{adj} G) \cdot \delta^{(\theta)} ,\\ A_{\mathrm{U}(1)-\mathrm{U}(1)-\mathbb{Z}_{M(\mathfrak{s})}^{R}} &= \sum_{s} (Q^{(s)})^{2} \,\dim(\boldsymbol{r}^{(s)}) \cdot \left[\delta^{(s)} - \dim(\boldsymbol{d}^{(s)}) \,\delta^{(\theta)}\right] ,\\ A_{\mathrm{grav}-\mathrm{grav}-\mathbb{Z}_{M(\mathfrak{s})}^{R}} &= -21 \,\delta^{(\theta)} + \delta^{(\theta)} \sum_{G} \dim(\operatorname{adj} G) \\ &+ \sum_{s} \dim(\boldsymbol{r}^{(s)}) \cdot \left[\delta^{(s)} - \dim(\boldsymbol{d}^{(s)}) \,\delta^{(\theta)}\right] . \end{split}$$

Andreas Trautner

Non-Abelian discrete R symmetries, 18.3.13

Outer automorphism group 'Out'

'Out' is the symmetry of the character table, i.e. the invariance under permutations of representations while at the same time permuting conjugacy classes.

		4	E			K	-	-			-	
	e	ь	b^2	b4	а	b^3	b^5	b^6	ab^2	ab4	b ⁷	ab^6
	1	3	1	1	2	3	3	1	2	2	3	2
$\mathbb{Z}_3\rtimes\mathbb{Z}_8$	1a	8a	4a	2a	$_{3a}$	8b	8c	4b	12a	6a	8d	12b
1_{1}	1	1	1	1	1	1	1	1	1	1	1	1
1_2	1	$^{-1}$	1	1	1	$^{-1}$	$^{-1}$	1	1	1	$^{-1}$	1
7 13	1	-i	$^{-1}$	1	1	i	-i	$^{-1}$	$^{-1}$	1	i	$^{-1}$
1 4	1	i	$^{-1}$	1	1	-i	i	$^{-1}$	$^{-1}$	1	-i	$^{-1}$
15	1	$-\tau$	i	$^{-1}$	1	τ^*	τ	-i	i	$^{-1}$	$-\tau^*$	-i
16	1	τ^*	-i	$^{-1}$	1	$-\tau$	$-\tau^*$	i	-i	-1	τ	i
17	1	$-\tau^*$	-i	$^{-1}$	1	τ	τ^*	i	-i	$^{-1}$	$-\tau$	i
18	1	τ	i	$^{-1}$	1	$-\tau^*$	$-\tau$	-i	i	$^{-1}$	τ^*	-i
2_1	2	0	-2	2	-1	0	0	-2	1	-1	0	1
2_2	2	0	2	2	$^{-1}$	0	0	2	-1	$^{-1}$	0	-1
2 2 ₃	2	0	-2i	-2	$^{-1}$	0	0	2i	i	1	0	-i
A 2 ₄	2	0	2i	$^{-2}$	-1	0	0	-2i	-i	1	0	i

Welche R Symmetrien sind möglich?

Zusammen:

Anomalienuniversalität + verbotener μ -Term

+ re-induzierung, $q_R(H_uH_d) \stackrel{!}{=} 0$

$$\Rightarrow \mathbb{Z}_{M}^{R} \text{ mit } M = 4 \times \mathbb{N} \text{ und } q_{\theta} = \frac{M}{4} \times \mathbb{N}$$
$$\Rightarrow q_{\mathcal{W}} = 2q_{\theta} = M/2 \text{ mod } M$$
$$\mathbb{Z}_{4}^{R}, \mathbb{Z}_{8}^{R}, \mathbb{Z}_{16}^{R}, \dots$$

• Nur $M = 2^n$, alle anderen zerfallen z.B. $\mathbb{Z}_{12}^R \cong \mathbb{Z}_4^R \times \mathbb{Z}_3$

Backup

Für eine Grassmann Integration gilt

$$\int d^2\theta \ 1 = 0 \quad \text{und} \quad \int d^2\theta \ \theta\theta = 1.$$

Wir können ein allgemeines Superfeld $S(y, \theta, \theta^{\dagger})$ in den fermionischen Koordinaten θ^{α} und $\theta^{\dagger}_{\dot{\alpha}}$ entwickeln. Zum Beispiel für ein chirales Superfeld

$$\Phi(y,\theta,\theta^{\dagger}) = \phi(y) + \sqrt{2}\theta\psi(y) + \theta\theta F(y).$$

Eine Integration $\int d^2\theta \Phi$ würde also F(y) isolieren. Man nennt dies einen F-Term Beitrag zu \mathcal{L} und schreibt $[\Phi]_F$. Es stellt sich heraus, dass $[\mathcal{W}(\Phi_i)]_F$ genau die Terme eines herkömmlichen supersymmetrischen Potentiales enthält, d.h.

$$\mathcal{L}(x) \supset [\mathcal{W}(\Phi_i)]_F = \int d^2\theta \mathcal{W}(\Phi_i).$$

i) Giudice-Masiero Giudice & Masiero

- i) Giudice-Masiero Giudice & Masiero
 - μ -Term Aus dem Kähler-Potential

$$\begin{split} K \supset \kappa \frac{X^{\dagger}}{M_P} H_u H_d + h.c. \\ X^{\dagger} \to \langle X \rangle \Rightarrow \mu_{eff} = \kappa \frac{\langle X \rangle}{M_P} \sim m_{3/2} \end{split}$$

• Entscheidende Annahme: F_X entspringt aus einem "Hidden-Sektor", der die Gravitinomasse $m_{3/2}$ erzeugt, d.h. X ist das Feld, welches SUSY bricht

$$\Rightarrow \int d^2\theta X W_{\alpha} W^{\alpha} \mathsf{Operator} \text{ muss exisitieren} \Rightarrow q_R(X) = 0$$

• Und damit der obige Kählerterm erlaubt ist damit auch

$$\Rightarrow q_R(H_u H_d) = 0$$

- i) Giudice-Masiero Giudice & Masiero
- ii) Kim-Nilles Kim & Nilles

- Giudice-Masiero Giudice & Masiero Kim-Nilles Kim & Nilles
- - μ -Term durch effektive Terme im Superpotential

$$\mathcal{W} \supset c_{\Omega} \frac{\Omega}{M_P^2} H_u H_d,$$

wobei Ω das Superpotential eines Hidden-Sektors ist. ($[\Omega] = 3$)

• Dieser Hidden-Sektor ist ebenfalls R-geladen, d.h. damit ein solcher Term zustande kommt muss auch hier gelten

$$q_R(H_u H_d) = 0.$$

- i) Giudice-Masiero Giudice & Masiero
- ii) Kim-Nilles Kim & Nilles

- i) Giudice-Masiero Giudice & Masiero
- ii) Kim-Nilles Kim & Nilles
- iii) Nicht-perturbativ Dine et al., Lee et al.

- i) Giudice-Masiero Giudice & Masiero
- ii) Kim-Nilles Kim & Nilles
- iii) Nicht-perturbativ Dine et al., Lee et al.
 - R-Symmetrie ist anomal, die Anomalie wird aufgehoben durch den Green-Schwarz Mechanismus
 - \Rightarrow es existiert ein Green-Schwarz Axion, als direkte Konsequenz tauchen Terme des Superpotentials mit $q_R = 0$ im nicht-perturbativen Teil des Superpotentials auf und werden so wiedereingeführt. ("Retrofitting")

- i) Giudice-Masiero Giudice & Masiero
- ii) Kim-Nilles Kim & Nilles
- iii) Nicht-perturbativ Dine et al., Lee et al.

Das heißt, unabhängig vom konkreten Mechanismus gilt

$$q_R(H_u H_d) = 0$$

- R-Symmetrie ist anomal, die Anomalie wird aufgehoben durch ein Green-Schwarz Axion
- Dieses Axion koppelt nicht-perturbativ an Terme mit $q_R = 0$
- Brechung der R-Symmetrie falls das Axion einen VEV bekommt, z.B. durch einen Hidden Sektor
- Terme mit $q_R = 0$, welche zuvor verboten waren, werden re-induziert $\Rightarrow q_R(H_uH_d) \stackrel{!}{=} 0$
- Verbindung zu dynamischer SUSY Brechung, z.B. über Gaugino Kondensat

$$\mathcal{W} \supset \frac{\langle \mathcal{W}_h \rangle}{M_P^2} H_u H_d \Rightarrow \mu \sim \frac{\langle \mathcal{W}_h \rangle}{M_P^2} \sim m_{3/2}$$
 Lee et al.

- μ -Problem gelöst, $\mu \sim m_{SUSY} \sim m_{3/2}$ auf natürliche Weise
- R-Parität als Unterguppe der gebrochenen R-Symmetrie erhalten

Einschränkungen für M

 $A_3 - A_2 = 0 \ \mathrm{mod} \ \eta \ \ \Rightarrow \ \ q_{H_u} + q_{H_d} = 4q_\theta \ \mathrm{mod} \ 2\eta$

mit $q_{H_u} + q_{H_d} = 0 \mod \eta$ folgt,

$$4q_{\theta} \mod M = 0.$$

Für ungerade M: q_{θ} muss ein vielfaches von M oder 0 sein, d.h. θ und das Superpotential ist ungeladen und der μ -Term erlaubt. Für gerade M folgt hingegen (alle Ladungen sind ganzzahllig):

$$q_{\theta} = \frac{M}{GCD(M,4)} \times \mathbb{Z}$$

Die Einzigen wirklichen R-Symmetrien ergeben sich damit für θ -Ladungen

$$q_{\theta} = \frac{M}{4} \times \mathbb{Z} \setminus \left\{ \frac{M}{2} \times \mathbb{Z} \right\}$$