Studies of Higgs hadronic decay channels at CLIC

IMPRS Young Scientist Workshop at Ringberg Castle 18th July 2014 Marco Szalay

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- Physics at e⁺e⁻ colliders
- CLIC collider and detectors
- BDT intermezzo
- Higgs branching ratio measurements
- Conclusions

Max-Planck-Instit

Physics at e⁺e⁻ colliders

- precision measurement of:
 Higgs sector (couplings, mass, potential)
 - model independent H to Z coupling
 - top quark (mass, width)
 - EW sector
- Search for new physics:
 - direct reach up to $\frac{\sqrt{s}}{2}$
 - model-dependent indirect reach far beyond \sqrt{s}

Max-Planck-Institut für Physik

Higgs production in e+e- collisions

Main H production channels at 350 GeV:

- Higgs strahlung (allows model-independ Z to H coupling measurement)

Linear Colliders - CLIC

- A lepton collider allows for precision measurements:
 - leptons \rightarrow clean events, well defined initial state
 - linear \rightarrow no synchrotron radiation energy losses
 - complementary to LHC

Linear Colliders - CLIC II

- Almost 50 km long!
- 2 beams: high intensity (~100A) low energy driver beam produces the 12 GHz RF power for a low intensity, high energy beam
- Goal is to achieve 100 MV/m

Max-Planck-Institut für Physik

Detectors

GOALS

- High precision $Z \rightarrow \ell^+ \ell^-$ reconstruction
- Separation of W and Z hadronic decays
- Measure Higgs couplings to fermions

18-7-2014

Max-Planck-Institut für Physil

REQUIREMENTS

- Excellent tracking
- Highly granular calorimeters
- Very efficient b and c jet tagging
- Precise time stamping

7

Physics Benchmarks

- Simulation of a set of physics processes to quantify the response of a particular detector design
- Evaluate the physics potential of new accelerators
- Crucial to compare detectors before building them (or even prototypes)
- Can help to tune hardware parameters

Higgs production at CLIC - 350 GeV

Channel	Xsection (fb)	# events for 500 fb ⁻¹
Hvv (inclusive)	51.54	25,770
HZ, Z→e⁺e⁻	4.92	2,460
HZ, Z→μ·μ·	4.93	2,465
HZ, Z→jets	93.4	46,700

Background	Xsection (fb)	# events for 500 fb ⁻¹
qqll	1,704	852,000
qqlv	5,914	2,957,000
qqvv	324.6	162,300
qqqq	5,847	2,923,500

Higgs event selection

Max-Planck-Institut für Physik

Boosted Decision Trees Intermezzo

• Start with a MC sample of signal and background events

Studies of Higgs hadronic decay channels at CLIC

- Split the sample in 2 (train and test)
- Find the variable and the value that gives the best signal/background separation

$$P = \frac{\sum_{s} W_s}{\sum_{s} W_s + \sum_{b} W_b}$$

Repeat on the children nodes

BOOSTING:

18-7-2014

Max-Planck-Institut für Phy

 Make new decision tree, previously misclassified events are weighted more

11

Higgs event selection - II

The BDT effectively suppresses the non Higgs background and properly separate the various signal final states

18-7–2014

Max-Planck-Institut für Physik

Higgs Branching Ratios

Separate $H \rightarrow bb$, $H \rightarrow cc$ and $H \rightarrow gg$ based on flavor tagging information

18-7–2014

Max-Planck-Institut für Physik

Flavor Tagging

Precise vertex reconstruction allow to identify the interaction point and secondary vertices

18-7-2014

Max-Planck-Institut für Physi

Jet flavor tagging information come from these vertices (e.g. M and **p** for the leading hadron in the decay)

Higgs decay separation

Higgs decay separation - II

Additional TMVA (BDTG) filter on:

- Flavor tagging info
- number of particles in jet (discriminates tau jets)
- Higgs invariant mass (discriminates W leptonic decay - missing E)
- Ynn (discriminates H → WW
 → qqqq more jets than what is clustered)

18-7-2014

Max-Planck-Institut für Physi

Templates

2D projection of 3D templates

Max-Planck-Instituti für Physik

18-7-2014

Fitting the templates

- Binned maximum likelihood fit
- Assume Poissonian fluctuation for each data bin:

$$P_{ijk} = \frac{\mu^n e^{-\mu}}{n!}$$

with n = number of data entries in bin ijk and $\mu = \sum w_m T_m$ for the same bin

- Then the Likelihood is the product of P_{ijk} in all bins
- Find the w_m that maximize this value

Putting all together

- To compare experimental results to theory, we want to obtain the Higgs couplings starting from the measurement of σ and σ x BR
- Global fit including all the available measurement

$$\chi^2 = \sum \frac{(C_i - 1)^2}{\Delta F_i^2}$$

where C_i depend on the couplings (e.g. $C_{ZH,H\rightarrow bb} = \frac{G_{HZZ}^2 G_{Hbb}^2}{\Gamma^2}$)

and ΔF_i is the experimental precision

Global Fit

2 possible fit: model-independent and model-dependent

Conclusions

- e⁺e⁻ linear colliders are a key tool to explore the Higgs sector with precision measurements (complementary to LHC)
- A new generation of detectors with excellent jet energy resolution and tracking is being developed
- Model independent H to Z couplings can be measured with such machines
- Unique possibility in e⁺e⁻ due to clean environment and precise vertexing
- Higgs hadronic decay is very interesting since
 H →cc and H →gg can't be measured at LHC (and H →bb is very difficult too)

Detectors - Particle Flow algorithms

Max-Planck-Institut für Physik Werner-Heisenberg-Institut) 18-7–2014

Linear Collider Design Concepts

- A lepton collider allows for precision measurements (clean events, well defined initial state)
 - in the TeV range to complement LHC
 - linear to prevent synchrotron radiation energy losses

• Two machine concepts:

- ILC: superconductive accelerator technology ready to build
- CLIC: two-beam accelerator for higher energies still in development

