Multilepton signatures of natural supersymmetry in ATLAS

Johannes Mellenthin

Max-Planck-Institut für Physik, München

IMPRS Young Scientists Workshop, Ringberg 2014

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) **Idea:** Assign each particle in the standard model a supersymmetric partner with different spin by 1/2.

- SUSY can provide a solution to the Hierarchy Problem
- No Superpartners observed so far if it exists, SUSY must be a broken symmetry
- SUSY breaking introduces new parameters - rich parameter space
- → Minimal Supersymmetric Standard Model (MSSM)

Figure: Illustration by DESY at Hamburg.

p(henomenological)MSSM

- The MSSM has 105 free parameters \rightarrow too large to study in complete generality.
- Reduction of the parameters with experimentally motivated constraints.
- \rightarrow 19 or 20 parameter for the pMSSM:

10 sfermion masses	$m_{\tilde{L}1,2}$	$m_{\tilde{e}1,2}$	m_{L3}	m _{ẽ3}	$m_{\tilde{Q}1,2}$
	$m_{\tilde{u}1,2}$	$m_{\tilde{d}1,2}$	$m_{ ilde{Q}3}$	$m_{\widetilde{u}3}$	$m_{\tilde{d}3}$
3 gaugino masses	M_1	M_2	M_3		
3 Higgs/Higgsino	tanβ	μ	M _A		
3 tri-linear couplings	A_t	A_b	$A_{ au}$		
Gravitino	(<i>m</i> _{3/2})				

- Cahill-Rowley, Hewett, Ismail, Rizzo (arXiv:1307.8444): pMSSM Studies at the 7, 8 and 14 TeV LHC.
- Random choice of parameters \rightarrow many millions of models (SOFTSUSY).
- Reduction of the models on the basis of the following constraints:
 - Collider (pre-LHC)
 - Flavor
 - Precision measurement
 - Dark matter
 - Theoretical constraints
- Selection of a set of models with low fine tuning & neutralino LSP.
 - Prediction of a Higgs mass of 126 \pm 3 GeV.
 - LSP saturates the WMAP relic density.
 - Better than 1% fine tuning (low-FT).
- Further study of these models (\sim 10,000).

m _{Ĩ.(e)1,2,3}	100 GeV - 4 TeV	
$m_{\tilde{Q}(q)1,2}$	400 GeV - 4 TeV	
$m_{\tilde{Q}(q)3}$	200 GeV - 4 TeV	
<i>M</i> ₁	50 GeV - 4 TeV	
<i>M</i> ₂	100 GeV - 4 TeV	

$ \mu $	100 GeV - 4 TeV
M ₃	400 GeV - 4 TeV
$ A_{t,b,\tau} $	0 GeV - 4 TeV
M _A	100 GeV - 4 TeV
taneta	1 - 60
<i>m</i> _{3/2}	1 eV - 1 TeV (Ã LSP)

arXiv:1307.8444

- Authors tested these models on published ATLAS results.
- Exclusion of the models:

	LSP	LSP		
Search	Neutralino	Gravitino	Low-FT	
2-6 jets	26.7%	21.6%	44.9%	
multijets	3.3%	3.8%	20.9%	
1-lepton	3.3%	6.0%	20.9%	
SS dileptons	4.9%	12.4%	35.5%	
Medium Stop (2I)	0.6%	8.1%	4.9%	
Medium/Heavy Stop (1I)	3.8%	4.5%	21.0%	
Direct Sbottom (2b)	6.2%	5.1%	12.1%	
3rd Generation Squarks (3b)	10.8%	9.9%	40.8%	
3rd Generation Squarks (3I)	1.9%	9.2%	26.5%	
3 leptons	1.4%	8.8%	32.3%	
4 leptons	3.0%	13.2%	46.9%	ATLAS-CONF-2012-153
Z + jets + MET	0.3%	1.4%	6.8%	

arXiv:1307.8444

 $\rightarrow\,$ Surprisingly high exclusion with four leptons analysis.

- + ∃ →

Analysis details

- Goal: understand the high exclusion of the four leptons analysis.
- Generation of 4771 excluded models with Herwig++.
- Analysis of the models:
 - Kinematic cuts applied on generated leptons and jets.
 - Without detector simulation.
 - Each model generated with at least 50,000 events.

- ATLAS-CONF-2013-036: Search for supersymmetry in events with four or more leptons in 21 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector
- arXiv:1405.5086v1: Search for supersymmetry in events with four or more leptons in $\sqrt{s} = 8$ TeV *pp* collisions with the ATLAS detector
- Explanation of the different signal regions:

SR	$N(\ell + e, \mu)$	N(au)	Z Candidate	$E_T^{\text{miss}}[\text{GeV}]$		m _{eff} [GeV]
SR0noZa	<u>≥ 4</u>	\geq 0	extended veto	> 50		-
SR0noZb	\geq 4	\geq 0	extended veto	> 75	or	> 600
SR1noZa	= 3	\geq 1	extended veto	> 50		-
SR1noZb	= 3	\geq 1	extended veto	> 100	or	> 400
SR2noZa	= 2	\ge 2	extended veto	> 75		-
SR2noZb	= 2	\geq 2	extended veto	> 100	or	600
SR0Z	\geq 4	\geq 0	request	> 75		-
SR1Z	= 3	\geq 1	request	> 100		-
SR2Z	= 2	\geq 2	request	> 75		-
			arXiv:1405.5086v1			

• Z veto or request.

• Background exclusion: require E_T^{miss} or m_{eff} .

Analysis of the models

Figure: Total cross-section.

Figure: Strong production fraction.

- NLO + NLL cross-section used for strong production.
- Majority of models dominated by weak production.
- Next: calculate acceptance using analysis cuts.

Figure: Yield in 20.3 fb^{-1} for events with four or more leptons (incl. taus).

Figure: Strong production fraction for events with four or more leptons (incl. taus).

- $\bullet\,$ Loss of \sim 1% of the models due to insufficient Monte Carlo statistics.
- Mostly strong production for events with four leptons in acceptance.

Investigated SUSY production modes for a typical model with large shift in strong production fraction when requiring four or more leptons.

- Higgsino like chargino / neutralino production dominates, but has low multi-lepton branching fraction.
- Slepton + sneutrino production does not produce a four leptons signature.
- Gluino decays produce top quarks and charginos / neutralinos → more multi-lepton events.
- Further studies in progress.

Figure: Processes for model number 9029.

Exclusion of the models

- $\bullet \sim$ 99.9% of models have more than 5 MC events with four or more leptons.
- ~98% of models have more than 5 MC events in at least one SR.
- $\rightarrow \,$ Other 2% not considered further, more events needed.

Figure: Exclusion of the models.

 $\rightarrow\,$ Over 70% of the analysed models could be excluded by a single signal region alone.

excl. only by SR	Numbe	er of excl. models	$N(\ell + e, \mu)$	$N(\tau)$	Z Candidate
	Total	Unique			
SR0noZa/b	2771	231	≥ 4	≥ 0	extended veto
SR1noZa/b	2968	350	= 3	\geq 1	extended veto
SR2noZa/b	1267	1	= 2	\geq 2	extended veto
SR0Z	1655	137	≥ 4	≥ 0	request
SR1Z	698	4	= 3	\geq 1	request
SR2Z	238	7	= 2	\geq 2	request

• Significant contributions from multiple signal regions, including those with taus.

• Caution: No detector effects included!

- The sensitivity of the ATLAS four leptons SUSY search to pMSSM models with low fine-tuning has been studied.
- Events with four leptons in acceptance arise predominantly from squark and gluino production (strong interaction).
- Of the models claimed to be excluded, we confirm about 70 %. There are some caveats:
 - No attempt yet to describe detector efficiency.
 - No consideration of models that were not excluded in the paper with four leptons analysis.
- Nevertheless, the four leptons signature appears powerful in these models with low fine-tuning.
- Next steps:
 - Extension to complete model set.
 - Inclusion of detector efficiency estimates.
 - Further study of signatures, which SRs perform best, etc.
 - Reoptimisation for low-FT pMSSM signatures.

Thank you for your attention!