





## Application of Neural Networks for the Belle II Experiment

Fernando Abudinén

July 16 2014

- 1 The neural z-vertex trigger
  - Why a *z*-vertex trigger?
  - Studies with and without background
  - Outlook
- 2 Flavor Tagging
  - Why flavor tagging?
  - Results and Outlook





## Upgrade of KEKB to SuperKEKB (Tsukuba)









$$e^+ \to \Upsilon(4S) \leftarrow e^-$$
  
 $B\bar{B} \Rightarrow \sqrt{s} = 10.58 \text{ GeV}$ 

- $\blacksquare$  Instantaneous luminosity of  $L=0.8\cdot 10^{36}~{\rm cm}^{-2}{\rm s}^{-1}$
- $\Rightarrow$  40 times higher than the world record reached by KEKB.
- $\Rightarrow$  50 times larger data sample



#### The Belle II Detector







- CDC: Provides track information for the trigger.
- $\Rightarrow$  15000 sense wires in 9 superlayers
- $\Rightarrow$  Config. AUAVAUAVA "A"  $\hat{=}$  Axial, "U" and "V"  $\hat{=}$  stereo



## Why a z-Vertex Trigger?





- Undesired scattering processes (Touschek, Beam-Gas scattering, etc) ⇒ **background**
- Background events not from collision point (z = 0)
- Higher luminosity  $\Rightarrow$  higher background (factor  $\sim$  **30**)
- lacktriangle Data prod. rate  $\gg$  transfer + record capacity  $\Rightarrow$  L1 Trigger



- Filter out events with vertex  $(z_0 \neq 0)$
- $\Rightarrow$  Goal: High resolution z-vertex trigger ( $\sigma \leq 2$  cm)
- $\Rightarrow$  Cut at  $\pm 3\sigma$ 
  - Trigger latency ( $\sim 5~\mu s$ )



## Why a *z*-Vertex Trigger?





#### CDC Tracking:

■ 15000 wires  $\Rightarrow 2336$  track-segments (TS)



Which information is available for triggering?

- a) Identification numbers of active track-segments (TS-IDs)
- ⇒ Position of priority wire
- b) Drift times of priority wires



### Multi Layer Perceptron





- a) TS  $\hat{=}$  Input-Neurons
- b) Drift times  $\hat{=}$   $t_k$  Input values
- $\Rightarrow$  Hidden layer:  $n_{\mathrm{hidden}} = 3 \cdot n_{\mathrm{input}}$
- $\Rightarrow$  Input:  $I_i = \sum_{k=0}^{n_{\mathsf{input}}} w_{ik} t_k$
- $\Rightarrow$  Output:  $a_i = \tanh(I_i)$





 $\Rightarrow$  Output neuron:

$$z_{\mathsf{Out}} = a(\sum_{i=0}^{n_{\mathsf{hidden}}} w_{\mathsf{Out},i} \cdot a(I_i))$$

lacktriangle Real vertex from simulation:  $z_{\mathsf{True}}$ 



### **Training Process**





- $\Rightarrow$  Training Sample:  $N_{\rm train} \sim 20000$  MC events
  - Training: Modify w stepwise  $\Rightarrow z_{\mathsf{Out}} \to z_{\mathsf{True}}$
  - Training Algorithm: BP (Back Propagation)
  - BP evaluates cost function  $E(\mathbf{w})$  (MSE) at each step n:



$$E(\mathbf{w}) \equiv \frac{1}{N_{\rm train}} \sum_{j=1}^{N_{\rm train}} \left(z_{\rm True}^j - z_{\rm Out}^j\right)^2$$

$$\Rightarrow \Delta \mathbf{w} = -\eta \frac{\partial E}{\partial \mathbf{w}}$$

$$\Rightarrow \mathbf{w}_{n+1} = \mathbf{w}_n + \Delta \mathbf{w}$$



### Method







■ Decompose events in single tracks ⇒

### CDC Phase Space:

- $\quad \bullet \quad \phi \ \in [0^\circ, 360^\circ]$
- $\quad \blacksquare \quad \theta \ \in [17^\circ, 150^\circ]$
- $p_{\mathsf{T}} \in [0.2, 5.2] \; \mathsf{GeV}/c$  $p_{\mathsf{T}} \propto \kappa^{-1}$
- Whole CDC phase space too much input for a single MLP
- $\Rightarrow$  Divide it in sectors:  $\Delta\phi\sim1^{\circ},\ \Delta\theta\sim6^{\circ}$   $\Delta p_{\rm T}\sim0.05\text{-}0.6\ {\rm GeV}/c$
- $\Rightarrow \sim 2 \cdot 10^6 \text{ sectors}$
- Find the sectors which are firing!



### **MLP** Test





Train a MLP for each specific sector! Test of the MLP after training:

⇒ Compare MLP output with true value! (simulated tracks)

■ To evaluate the performance consider:

$$\mu = \text{mean}(z_{\text{Out}} - z_{\text{True}})$$
 $\sigma = \text{std}(z_{\text{Out}} - z_{\text{True}})$ 





## Results without Background





 $p_{\rm T} \in [5.0, 5.2]~{
m GeV}/c \Rightarrow {
m vary}~\theta$ 





## Results without Background





#### Network resolution as a function of polar angle $\theta$ :





# Results without and with Background





$$\theta \in [56^{\circ}, 62^{\circ}] \quad \Rightarrow \text{ vary } p_{\mathsf{T}}$$





## Outlook of the *z*-vertex trigger





- $\Rightarrow$  With and without background: Resolution significantly better than required (< 2 cm).  $\odot$ 
  - lacktriangle Background leads to an average resolution loss of  $\sim 25\%$
  - Parallelism inherent to the computations makes the MLP suitable for L1 trigger ⇒ realizable in FPGA. ○
  - The number of required MLPs ( $\sim 2 \cdot 10^6 \hat{=} 10$  Gb) is a challenge for the hardware implementation.
  - Next step: Decomposition of a specific event in separate tracks? (Look-Up-Table, 2D Trigger of Belle II?)



### Why flavor tagging?





■ Goal: Measurement of time dependent violation of CP symmetry in the *B*-Meson system



- $B_{\text{rec}}$ : Fully reconstructed B-meson in decay to CP eigenstate
- $B_{\text{tag}}$ : B-meson used for flavor determination



## General approach





- $\blacksquare$   $B^0$  has a high number of decay channels
- $\Rightarrow$  full reco. of  $B_{\mathsf{tag}}$  not feasible
  - Some charged final state particles (Targets) correspond to
- ⇒ Flavor specific decays
  - Examples:
  - $\bar{B}^0 \to X l^- \bar{\nu} \quad (b \to c l^- \bar{\nu}) \to + (-) \text{ charged } l \text{ tags } B_0 \ (\bar{B}_0)$
  - $\bar{B}^0 o XK^-$  (b o c o s) o + (-) charged K tags  $B_0$   $(\bar{B}_0)$
  - $\bar{B}^0 o X D^* \pi^-$  (b o c) o +(-) charged  $\pi$  tags  $B_0$   $(\bar{B}_0)$
  - ...
- ⇒ Group flavor specific signatures into different categories!



#### Event and track level





■ Two Steps needed for each category: Track Level → Event level



- Final step:
- ⇒ Category combiner



## Flavor tagging





#### For each category:

- lacksquare Assumption: remaining tracks in  $B_{\rm rec}$  belong to  $B_{\rm tag}$
- 1. Track level output: probability of being the target track
- $\Rightarrow$  Select the track with highest probability
- 2. Event level output:  $y_{\mathsf{Event}} = q \cdot r$ :

 $q = \operatorname{sgn}(y_{\mathsf{Event}})$ : flavor of  $B_{\mathsf{tag}}$ 

 $r = ||y_{\mathsf{Event}}||$ : expected flavor dilution factor

 $r=1-2\omega$  with  $\omega$  wrong tag fraction

 $r=1\ (r=0)$  indicates (no) flavor information

#### Combining all event level outputs:

- 3. Category Combiner output: combined dilution factor
- $\Rightarrow y_{\mathsf{Combiner}} = q \cdot r$



#### Belle vs. Babar Scheme







⇒ Each step: Trained neural network (NN) or other TMVA method.



### Semimuonic Category





- Primary Muons:  $\bar{B}^0 \to X \mu^- \bar{\nu}$  ( $b \to c \mu^- \bar{\nu}$ )  $\rightarrow$  pos (neg) charged muon tags  $B_0$  ( $B_0$ )
- Variables for Track Level (calculated only for each track):  $q_{\rm MC}$ ,  $p^{\rm cms}$ ,  $\theta_{\rm lab}$ ,  $\mathcal{L}_{\mu}$
- Variables for Event Level (calculated only for target track):
- $q_{\text{Class}}, M_{\text{recoil}}, p_{\text{miss}}^{\text{cms}}, \cos \theta_{\text{miss}}, E_{90}^{W}$

#### First Studies:

- Generate Semimuonic MC events:  $\Upsilon(4S) \to B_1^0 B_2^0$  $B_1 \to J/\Psi K_S^0 \qquad B_2 \to X \mu \nu$
- Define function  $y_{MC}$  (track):

$$y_{\mathrm{MC}}\left(\mathrm{track}\right) = \begin{cases} 1 & \text{if } (\ \mathrm{track}\ \hat{=}\ \mu)\,\&\, \left(\mu \to \mathrm{mother}\ \hat{=}\ B^0\right) \\ 0 & \text{else} \end{cases}$$



## Training of MLP





- a) Input Variables  $\hat{=}$ Track level Variables
- b) Target  $\hat{=} y_{MC}$
- $\Rightarrow$  Hidden layer:  $n_{\mathrm{hidden}} = 3 \cdot n_{\mathrm{input}}$
- $\Rightarrow$  Activation function  $a_i = \tanh(I_i) \in [-1, 1]$

 $\Rightarrow$  Output neuron:  $y_{\text{Out}} = \text{Probability of being the target}$  Track



#### Training:

- lacktriangle Modify  $\mathbf{w} \Rightarrow y_{\mathsf{Out}} o y_{\mathsf{MC}}$
- Cost function= MSE
- Training Algorithm= BP



#### First Results







#### ■ Particles classified as target:

|   | $\mu$ | $\pi^{\pm}$ | $K^{\pm}$ | e   | p   |
|---|-------|-------------|-----------|-----|-----|
| % | 94.1  | 4.3         | 1.0       | 0.5 | 0.1 |

■ Mothers of classified target:

|   | $B^0$ | D   | K   | $\pi$ | $\eta$ | ρ   |
|---|-------|-----|-----|-------|--------|-----|
| % | 91.3  | 5.2 | 2.0 | 1.3   | 0.1    | 0.1 |



■ Wrongly class. particles with right flavor ( $\sim 3\%$ ):

|   | $\mu$ | $\pi^{\pm}$ | $K^{\pm}$ | e | p |
|---|-------|-------------|-----------|---|---|
| % | 24    | 36          | 36        | 3 | 1 |



### Outlook





- Only the Track level of the Semimuonic category has been studied yet.
- $\Rightarrow$  About 94% of  $N_{\rm Signal}$  are correctly classified and nothing has been optimized yet!.  $\circledcirc$



#### Numbers for Evaluation





#### After Training the MLP is Tested with a Testing Sample.

- Some numbers to evaluate Performance:
- $ightharpoonup N_{\sf Events}$ : Total Number of Events.
- lacksquare  $N_{\mathsf{noParticle}}$ : ListSize of ParticleList is 0 (No  $B_{\mathsf{reco}}$ ).
- $ightharpoonup N_{\mathsf{Background}}$ : Target muon is not in RestofEvent.
- $N_{\text{noTracks}}$ : No Track could be fitted.
- $N_{\text{Signal}}$ : Track of Target muon in RestofEvent can be reconstructed.
- $ightharpoonup N_{Corr}$ : Correctly classified Events.
- lacksquare  $N_{\mathsf{Wrong}}$ : A wrong Track is classified as Muon.
- $\blacksquare$   $N_{\mathsf{Wrong\_rightFlavor}}$ : Wrongly classified Track tags the right flavor.



#### First Results





- Sample of  $N_{\mathsf{Events}} = 62766$ :
- $N_{\text{noParticle}} = 44202$
- Arr  $N_{\mathsf{Background}} = 2201$
- $N_{\mathsf{Signal}} = 16308$
- $\frac{N_{\rm Corr}}{N_{\rm Signal}} = 0.9127$
- $\frac{N_{\rm Wrong}}{N_{\rm Signal}} = 0.0873$
- $\frac{N_{\rm Wrong\_rightFlavor}}{N_{\rm Signal}} = 0.0272$
- $\begin{array}{c} & \frac{N_{\rm Corr} + N_{\rm Wrong\_rightFlavor}}{N_{\rm Signal}} = 0.9399 \end{array}$
- $\Rightarrow$  About 94% of  $N_{\rm Signal}$  are correctly classified and nothing has been optimized yet!



# Results without and with Background









# Results without and with Background









## Why a z-Vertex Trigger?





- Belle II: Present z-vertex trigger uses only TS-IDs (Hough transformation)
- No time for full track reconstruction !!!



- Significantly better results expected from neural networks (MLP) using drift times
- ⇒ Parallelism of MLP computations suitable for L1 trigger



## The Whole Trigger









### Multi Layer Perceptron





How does it work?



■ Input  $I_{\text{Out}}$  for output neuron:  $I_{\text{Out}} = \sum_{i=0}^{n_{\text{hidden}}} w_{\text{Out},i} \cdot a(I_i)$ 

- CDC-Track Segments (TS) = Input-Neurons (Input Layer)
- Input values  $t_k \triangleq \mathsf{Drift}$  times
- Neurons in the middle layer  $n_{\rm hidden} = 3*n_{\rm input}$  (Hidden Layer)
- $\blacksquare$  Connection weights  $w_{ik}$
- Activation function  $a_i = \tanh(I_i) \in [-1, 1]$
- Input  $I_i$  for a neuron i:  $I_i = \sum_{k=0}^{n_{\text{input}}} w_{ik} t_k$
- Output of the output neuron:  $z_{\text{Out}} = a(I_{\text{out}}) \in [-1, 1]$



### Multi Layer Perceptron





- From each simulated event: real vertex position on the z axis:  $z_{\mathsf{True}} \Rightarrow \mathsf{needs}$  only to be scaled to [-1,1].
- Training means to iteratively modify all weights  $\mathbf{w}$ , in order for  $z_{\text{Out}}$  to converge to  $z_{\text{True}}$  using a training algorithm (iRPROP $^-$ ).
- The *i*RPROP<sup>−</sup> algorithm evaluates at each iteration (training) step the Mean Squared Error function:

$$E(\mathbf{w}) \equiv \frac{1}{N_{\mathrm{train}}} \sum_{j=1}^{N_{\mathrm{train}}} \left( z_{\mathrm{True}}^j - z_{\mathrm{Out}}^j \right)^2$$

■ Training Sample  $N_{\text{train}} = 20000$  events

$$\Delta \mathbf{w} = -\eta \frac{\partial E}{\partial \mathbf{w}} \Rightarrow \mathbf{w}_{n+1} = \mathbf{w}_n + \Delta \mathbf{w}$$

$$\qquad n_{\rm total}^{\rm weights} = f_{\rm hidden} \left( n_{\rm input}^2 + 2 n_{\rm input} \right) + 1 \ \sim 900 - 3000$$



## Activation Function and Training Process







(a) Tangens Hyperbolicus



(b) Training Process



#### Method





#### Train a MLP for each specific sector!

- Illuminate uniformly each sector
- ⇒ Look for active TS
  - Select TS which are active in more than 15% of the events
- $\Rightarrow$  16-28 Input neurons





 $\Rightarrow$  Drift times of selected TS  $\Rightarrow$  Input values for MLP.



## z-Vertex Distribution for all Experiments









## Drift Time Distributions with TSF Resolution









## First Hit Time Distr. with TSF Resolution







(a) No Background



(b) Pure Background