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Introduction

A modern multi-loop and -leg calculation is done in three steps

1) Find integral basis for the process
2) Determine coefficients of the basis elements a;

3) Calculate elements (integrals) of the basis

Tools for each Step

1) Integration-by-parts identities (IBP-Ids),
Chetyrkin, Tkachov (1981)
MultiLoop Integrand Reduction Mastrolia, Ossola (2011),
Zhang (2012); Mastrolia, Mirabella, Ossola, Peraro (2012)

2) Generalized Unitarity, Bern, Dixon, Dunbar, Kosower (1994)

Kosower, Larsen (2011)

OPP Integrand Reduction, Ossola, Papadopoulos, Pittau (2007)
MultiLoop Integrand Reduction

3) Differential Equations, Kotikov (1991);Remiddi (1997);
Gehrmann, Remiddi (2000); Henn (2013)
Mellin-Barnes representaion, Smirnov (1999), Tausk (1999)

Feynman/Schwinger parameter representation
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Introduction

Slow progress:
one unit O(10ys)

B 2006
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Introduction

Hl 2006
2013

At one-loop this was very succesful what do we need for higher-loops?
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Introduction

one-loop two-loop
graphs only planar planar and non-planar
integral basis known determined case by case
/K - 2

integrals

known

only for certain cases

IR poles

cancellation between

one-loop and tree level

cancellation between two-

and one-loop and tree level

appearing functions

logs and dilogs

logs, polylogarithms,

generalized polylogs, elliptic

functions and more?

— a lot more exploring has to be done
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Differential Equations

Feynman integrals are functions of o Not all Feynman integrals are independent

@ Mandelstam variables @ IBP-ids connect different Feynman

@ Internal and external masses integrals
@ Spacetime dimensions @ We can find an integral basis called master
integrals

4

Exploit this by

o Taking derivatives of the master integrals in respect to the kinematic
invariants

@ Reduce derivatives back to master integrals

@ Solve the obtained first order differential equation analytically

Let's have a look at an easy example
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Differential Equations

The one-loop massless bubble

@ Construct diff. Operator
P _1p P
=2F ap"
@ Apply derivative
40O +On

@ Reduce back to Master Integrals with IBP-ids

- D4 P
2

@ Gives us the differential equation
@7 Q_
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Differential Equations

First order differential equation

O f(x) = A(x, €)f(x)

where ¢ is the dimensional regularization parameter D = 4 — 2¢.
Conjecture: We can always find a basis such that Henn(2013)

Dxf(x) = eA(x)f(x)

Example: one-loop Bhabha scattering
Laporta basis

0 0 0 0 0
0 0 0 0 0
2e—1) e(x—=1)%42x
) 0 — 0 0
0 0 0 0 0
2(x—1)xy(e—1) 2y(2e—1) 2(x—1)xy(2e—1) 2x(y+1)% P41 (x=1)(y=1)%
AP ANGy ) mE(x2—1)(y—1)2 mA (13 (x+y) (o +1) m (1)t Gy+1)  x=xF T DGy D)
Canonical basis
0o 0 0 0 0
0o 0 0 0 0
-3 0 T 0 0
0o 0 0 0 0
0 ¢ -t o oty

which simply integrates to Logarithms with arguments
{1+y,x1+xx+y,1+xy}
How can we find such a basis ?
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Differential Equations

This is still an open question

But it was possible for a lot of examples:
Henn(2013); Henn, Smirnov (2013); Henn Smirnov, Smirnov(2013); M. Argeri,
S. Di Vita, P. Mastrolia, E. Mirabella, J. Schlenk, L. Tancredi, U.S. (2014); Henn,
Melnikov, Smirnov (2014); Caron-Huot, Henn (2014); Caola, Henn, Melnikov,
Smirnov (2014); Héschele, Hoff, Ueda (2014)
A first step was done by applying the Magnus Exponential

Ageri, Di Vita, Mastrolia, Mirabella, Schlenk, Tancredi, U.S. (2014)

Magnus Theorem
Starting from a first order differential equation
Okf(x) = A(x, €)f(x)
We can write down its solution in terms of the Magnus Exponential

f(x) = M%) £ — QA £ Q(x) = Z Q,
X n=1
Ql(X) = / dTlA(Tl)
X0

0u(x) = 3 / : dn, / drlA(n), A(m2)]

v
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Differential Equations

The Magnus Theorem can aid us in finding a canonical basis and to integrate
the result

Algorithm for finding a canonical basis and integrating the result

e Find a DE which is linear in € (trial+ error + some experience)

Oxf(x) = (Ao(x) + €A1(x))f(x)
@ Basis change with Magnus f(x) = Bo(x)g(x)

D Bo(x) = Ao(x)Bo(x) ¢+ By = eoltx0)
@ Obtain a canonical system for g's

xg(x) = eA(x)g(x), A(x) = By (x)A1(x)Bo(x)
o Obtain the solution with Magnus

g(x) = Bi(e, x)go, Bi(x) = Al
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The f's obey an e-linear DE  [ADVMMSST '14]
ifferential Equations for Feynman Integrals

After getting rid of Ay, the g's obey a canonical DE

Axg(e, X) = € Ay (x) ge, X)
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Differential Equations

*1

[

()

1

1+2)

Bonciani, Remiddi, P.M.
2013

[¢(2) — 5H(0,z) + 2H(~1,0, )]

1 1 . )
B m] [¢(2)H(0, )

(p2 - k1)

}H(ll.(l.ll. r).

Ulrich Schubert

AdVMMSST (2014
n
P
-
9 =0,
oy =0,
¢ =0,
o9 = — H(0,0,0;2) - GH(0;2),
918 = = 2H(=1,0,0,0;2) + 2H(0,~1,0,0;) + 2H(0,0,~1,0;)

— 3H(0,0,0,0;2) — 4H(0,1,0,0;z

) + Co(—2H(—1,0;z)

+6H(0,~1;x) — H(0,0;)) + 23 H(0;z) + % )
P
gty =0
9y =0, =

) 3C

9% = H(0,0;2) + f .

9% = — 2H(~1,0,0;2) — 2H(0, —1,0;2) + 4H(0,0,0; ) + 4H(1,0,0; )
+ Co(~6H(~1;2) + 2H(0; ) — 3log 2) i* s

93 = 4H(-1,-1,0,0;z) + 4H(~1,0, -1,0;) — 8H(~1,0,0,0;z)
—8H(-1,1,0,0;z) + 4H(0, ~1,~1,0;z) — $H(0, ~1,0,0;z)
—8H(0,0,—1,0; ) + 10H(0,0,0,0;z) + 12H(0,1,0,0
—8H(1,-1,0,0;z) — 8H(1,0,~1,0;z) + 16 H(1,0,0,0; z)

1 log'2
+16H(1,1,0,0;2) + 12 Liaz + —5= +2(, (12log 2H(~1;7)

+12log 2H(1;7) + 6 H(~1,~1;z) — 2H(~1,0;z) — 8H(0, ~1;)
+H(0,0:2) — 12H(1, ~1;) +4H(L, 0;2) + 3log2)
476G

—2¢3(5H(=1;2) + 4H(0; 2) + 11 H(1;2)) —
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Differential Equations

Non-planar massless box Tausk (1999); Anastasiou, Gehrmann, Oleari, Remiddi, Tausk
(2000)

P 2]
, k1 —k2 —p2 __t
12 MI's for the crossed topology k1 Xx=—5, §>0,t<0,[s| > [t
P2 Pa

The f’s obey an e-linear DE [ADVMMSST '14]

L ) ps ) [
m<> g%jj{ jZl: fi=@sTas), h=EtTot), fh=EuTau),
C I

Tals) Tels) Tdsb) To(s,t) fi=3sTp(s), Fh=EstTe(st), fh=SsuTo(s ),
i ) L) F=duTy(st), fi=esTytu), fo=ctTyu,s),
Tals) sy Prst” _e 3 [e2(g 2 2
o fi1 =e*stuTy(s,t) Ts@n L §° Ty(8) + 12 Ta(t) + U° Ta(u)

—4é To(s, 2 To(t, Ta(u,
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Differential Equations

Higgs+Jet at three—loop Di Vita, Mastrolia, Yundin, U.S. work in progress

® 85 Master Integrals

= ¥ 3 - g e ) 2= P Sx <

h 4 Reduze2 - von Manteuffel, Studerus 2MlI's 3 Ml's 5Ml’s

taken from Pierpaolo’s slides at Amplitudes 2014
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Differential Equations

Higgs+Jet at three—loop Di Vita, Mastrolia, Yundin, U.S. work in progress
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Differential Equations

Higgs+Jet at three—loop Di Vita, Mastrolia, Yundin, U.S. work in progress
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Differential Equations

Higgs+Jet at three—loop Di Vita, Mastrolia, Yundin, U.S. work in progress
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Differential Equations

Higgs+Jet at three—loop Di Vita, Mastrolia, Yundin, U.S. work in progress
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Higgs+Jet at three—loop Di Vita, Mastrolia, Yundin, U.S. work in progress
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Differential Equations

Higgs+Jet at three—loop Di Vita, Mastrolia, Yundin, U.S. work in progress
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Differential Equations

Di Vita, Mastrolia, Yundin, U.S. work in progress

Higgs+Jet at three-loop
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Conclusion

@ Many processes are becoming available at NLO precision, often already
called the NLO revolution

@ The focus slowly shifts towards NNLO precision

@ In order to trigger a simillar revolution at NNLO we need a much better
understanding of the structure at two-loops

o First powerful tools are emerging and are being applied

o MultiLoop Integrand Reduction
o Generalized Unitarity
o Differential Equations

o New ideas stimulated the Differntial Equation method

@ We provided a procedure to find a canonical basis from a system which is
linear in €

@ Has been applied to the two-loop QED vertex and the two-loop non-planar
massless box which were previously known in the "bad” basis

@ New results for three loop Higgs+Jet ladder topology are on the way
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