Higgs Mechanism in the SM

THDM Higgs sector

Corrections to M_W

Z resonance observables

Summary and outlook

Two Higgs doublet models and electroweak precision obervables

Stephan Hessenberger

Max Planck Institute for Physics Young Scientist Workshop 2014

July 17 2014

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Higgs Mechanism in the SM	THDM Higgs sector	Corrections to M_W 000000	Z resonance observables	Summary and outlook
Outline				

- 1 Higgs Mechanism in the SM
- 2 THDM Higgs sector
 - THDM Higgs potential
 - Calculation of precision observables in the THDM
- 3 Corrections to M_W
 - Calculation of M_W by the μ decay
 - Results in the THDM
- 4 Z resonance observables
 - Z resonance
 - Corrections to the effective mixing angle
 - Results in the THDM
- 5 Summary and outlook

Higgs Mechanism in the SM

THDM Higgs sector

Corrections to M_W 000000 Z resonance observables

Summary and outlook

Higgs Mechanism in the SM

Electroweak standard model (SM):

- gauge theory based on the symmetry group $SU(2)_L \times U(1)_Y$
- spontaneous symmetry breaking introduces masses of W^\pm , Z

$$SU(2) \times U(1) \to U(1)_{\rm em}$$

 \Rightarrow single complex scalar doublet

$$\Phi = \begin{pmatrix} \phi^+\\ \phi^0 \end{pmatrix} = \begin{pmatrix} \phi^+\\ \frac{1}{\sqrt{2}} \left(v + H_{\mathsf{SM}} + i\chi\right) \end{pmatrix}$$

Higgs field $H_{\rm SM}$: neutral, scalar particle with mass M_H

				line in the dimension	
Higgs Mechanism	in the SM	THDM Higgs sector	Corrections to $M_W^{}$ 000000	Z resonance observables 00000	Summary and outlook

- non-vanishing vacuum expectation value v introduces gauge boson masses $M_W,\,M_Z$
- fermion masses induced by Yukawa couplings
- M_H free parameter \Rightarrow measurement
- July 2012: announcement of the discovery of a new boson by the ATLAS and CMS collaborations
- \Rightarrow SM Higgs or part of an extended Higgs sector?

arXiv:1207.7214

Higgs Mechanism in the SM	THDM Higgs sector	Corrections to $M_{W} \\ {\rm 000000}$	Z resonance observables	Summary and outlook
THEMALL				

THDM Higgs sector

- Two Higgs doublet model: interesting candidate for an extended scalar sector of the SM
 - $\Rightarrow\,$ one of the simplest extensions of the SM
 - \Rightarrow introduces only few additional parameters
 - \Rightarrow adds new phenomena like physical charged Higgs bosons
 - \Rightarrow MSSM is a SUSY-version of the THDM
- Analysis of electroweak precision observables in the THDM provides information on the free parameters

Higgs Mechanism in the SM	THDM Higgs sector ●000	Corrections to M_W 000000	Z resonance observables	Summary and outlo
THDM Higgs potential				
• two com	plex $SU(2)_L$	doublet scalar	fields Φ_1 and Φ_2	2
most general,	CP conservir	ig potential (λ	$_i \in \mathbb{R}$)	
$V(\Phi_1,\Phi_2)$	$=\lambda_1 \left(\Phi_1^{\dagger} \Phi_1 + \lambda_3 \left[\left(\Phi_1^{\dagger} + \lambda_4 \left[\left(\Phi_1^{\dagger} + \lambda_5 \left[\operatorname{Re} \left(\right) \right] \right] \right] \right] \right) \right]$	$-\frac{v_1^2}{2}\right)^2 + \lambda_2 \left($ $\Phi_1 - \frac{v_1^2}{2}\right) + \left($ $\Phi_1 \right) \left(\Phi_2^{\dagger}\Phi_2\right) - $ $\Phi_1^{\dagger}\Phi_2 - \frac{v_1v_2}{2}$	$ \left[\Phi_2^{\dagger} \Phi_2 - \frac{v_2^2}{2} \right]^2 $ $ \left[\Phi_2^{\dagger} \Phi_2 - \frac{v_2^2}{2} \right]^2 $ $ - \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_2^{\dagger} \Phi_2^{\dagger} + \lambda_6 \left[\operatorname{Im} \left(\Phi_2^{\dagger} \Phi_2^{\dagger} \Phi_2^{\dagger} + \lambda_6 \right]^2 \right]^2 $	$\left[1\right)\left]$ $\left[\frac{\dagger}{1}\Phi_{2}\right)\right]^{2}$

• minimum of the potential for $\lambda_i \geq 0$

$$\langle \Phi_1 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_1 \end{pmatrix} \qquad \langle \Phi_2 \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_2 \end{pmatrix}$$

Higgs Mechanism in the SM	THDM Higgs sector 0●00	Corrections to ${\cal M}_W$ 000000	Z resonance observables	Summary and outlook
THDM Higgs potential				

• field excitations around v_i ($\eta_i, \chi_i \in \mathbb{R}$)

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \eta_1 + i\chi_1) \end{pmatrix} \quad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \eta_2 + i\chi_2) \end{pmatrix}$$

 \Rightarrow quadratic terms in the potential

- \Rightarrow diagonalization leads to five massive scalar particles
 - two CP even Higgs states $(m_{h^0} \leq m_{H^0})$

$$h^{0} = -\sin \alpha \cdot \eta_{1} + \cos \alpha \cdot \eta_{2}$$
$$H^{0} = \cos \alpha \cdot \eta_{1} + \sin \alpha \cdot \eta_{2}$$

• a CP odd Higgs state

$$A^0 = -\sin\beta \cdot \chi_1 + \cos\beta \cdot \chi_2$$

• a pair of charged Higgs bosons

$$H^{\pm} = -\sin\beta \cdot \phi_1^{\pm} + \cos\beta \cdot \phi_2^{\pm}$$

Higgs Mechanism in the SM	THDM Higgs sector 00●0	Corrections to M_W 000000	Z resonance observables	Summary and outlook
THDM Higgs potential				

• $v^2 = v_1^2 + v_2^2$ related to the gauge boson masses and the electric charge e

$$v^{2} = \frac{4M_{W}^{2}s_{W}^{2}}{e^{2}}$$

(electroweak mixing angle: $s_W^2 = \sin^2 \theta_W$; $c_W^2 = \cos^2 \theta_W = \frac{M_W^2}{M_Z^2}$)

- \Rightarrow 7 free parameters:
 - Higgs masses m_{h^0} , m_{H^0} , m_{A^0} and m_{H^\pm}
 - ratio of the vacuum expectation values $\tan \beta = \frac{v_2}{v_1}$
 - CP-even mixing angle α
 - λ_5

Higgs Mechanism in the SM THDM Higgs sector

Calculation of precision observables in the THDM

Calculation of precision observables in the THDM

Assumptions:

 one of the CP-even Higgs states can be identified with the resonance found at the LHC

 $\Rightarrow m_{h^0} = 126 \text{ GeV}$

• couplings of h^0 should be SM-like (indicated by the experiments)

 $\Rightarrow \alpha = \beta - \frac{\pi}{2}$

Analysis of two scenarios:

decoupling region:

$$m_{H^0} = m_{A^0} = m_{H^\pm} \gg m_{h^0}$$

 \Rightarrow results approach the SM results

- large mass differences between the charged and neutral Higgs states
 - \Rightarrow large corrections to the SM results

• μ decay at tree level: relation between M_W and G_μ

$$\frac{G_{\mu}}{\sqrt{2}} = \frac{e^2}{8s_W^2 M_W^2} = \frac{\pi\alpha}{2M_W^2 \left(1 - \frac{M_W^2}{M_Z^2}\right)}$$

• G_{μ} : effective 4-fermion coupling constant in the Fermi model, defined by the muon lifetime

$$G_{\mu} = 1.663787(6) \cdot 10^{-5} \text{ GeV}^{-2}$$

Higher order corrections:

 loop diagrams and renormalization of masses and couplings (on-shell scheme)

$$\frac{G_{\mu}}{\sqrt{2}} = \frac{\pi\alpha}{2M_W^2 \left(1 - \frac{M_W^2}{M_Z^2}\right)} \left[1 + \Delta r\right], \quad \Delta r(M_W, M_Z, m_t, M_H)$$

- $\Rightarrow~M_W$ can be calculated by M_Z, α, G_μ and Δr for a given input M_Z , $m_t,~M_H$
 - \bullet calculation has to be done iteratively since Δr depends on M_W

Δr in the SM:

- precise calculation in the SM: complete at two-loop with leading higher order terms
- Result of M_W for a SM Higgs of 126 GeV and $m_t = 173.2 \pm 0.9$

$$M_W^{\rm SM} = 80.361 \pm 0.006 \pm 0.004 ~{\rm GeV}$$

• predicted value can be compared with the measured value

$$M_W^{\rm exp} = 80.385 \pm 0.015 \,\, {\rm GeV}$$

Non standard contribution $\Delta r_{\rm NS}$

- vertex and box corrections can be neglected due to small Yukawa couplings
- $\Rightarrow \Delta r_{\rm NS}$ is given in terms of the scalar contributions to the gauge boson self energies
- $\Rightarrow\,$ calculated with the help of the programs FeynArts, FormCalc and LoopTools

• result in the THDM for equal masses m_{H^0} , m_{A^0} , $m_{H^{\pm}}$ \Rightarrow approaches the SM prediction for large masses (decoupling)

- influence of a mass difference between the charged and neutral Higgs states
- grey area represents the measured value of M_W and its 1σ experimental limit

Higgs Mechanism in the SM	THDM Higgs sector 0000	Corrections to $M_{W} \\ 000000$	Z resonance observables	Summary and outlook
Z resonance				
7 resonance				

- properties of the Z boson investigated at LEP and SLC with high accuracy
- precise knowledge of Z resonance observables:
 - the width of the Z boson
 - asymmetries
 - mixing angles at the Z peak
- \Rightarrow well-suited for comparison between theory and experiment

Higgs Mechanism in the SM	THDM Higgs sector	Corrections to $M_{W} \\ {\rm oooooo}$	Z resonance observables	Summary and outlook
Z resonance				

Higher order corrections near the Z pole:

- include self energies, vertex corrections and counterterms
- external fermion self energies are contained in the wave function renormalization
- box diagrams can be neglected

effective vector and axial vector couplings

$$v_f \to g_V^f = v_f + \Delta g_V^f \\ a_f \to g_A^f = a_f + \Delta g_A^f$$

Higgs Mechanism in the SM THDM Higgs sector Corrections to M_W

Z resonance observables Summary and outlook 00000

Corrections to the effective mixing angle

Corrections to the effective mixing angle

effective leptonic mixing angle

$$\sin^2 \theta_{\mathsf{eff}}^{\mathsf{lept}} = \frac{1}{4} \left(1 - \operatorname{Re} \frac{g_V^e}{g_A^e} \right)$$

- experimental value: $\sin^2 \theta_{\text{eff}}^{\text{lept}} = 0.23153 \pm 0.00016$
- $\sin^2 \theta_{\text{aff}}^{\text{lept}}$ calculated in the SM at the same level of accuracy as Λr

 \Rightarrow result for $M_H = 126$ GeV and $m_t = 173.2 \pm 0.09$ GeV

 $\sin^2 \theta_{\rm eff}^{\rm lept} = 0.23152 \pm 0.00005 \pm 0.00005$

- non-standard corrections from the THDM
 - \Rightarrow scalar corrections to the vertex and the external fermions can be neglected
 - \Rightarrow depend only on the counterterms of the gauge boson sector

neutral Higgs states

• grey area represents the experimental value of $\sin^2\theta_{\rm eff}^{\rm lept}$ and its 1σ experimental limit

Higgs Mechanism in the SM	THDM Higgs sector	Corrections to ${\cal M}_W$ 000000	Z resonance observables	Summary and outlook

Summary and outlook

Summary

- Higgs potential of the THDM
- $\bullet\,$ calculation of M_W by the μ decay
- $\sin^2 \theta_{\rm eff}^{\rm lept}$ as an example for a Z resonance observable
- non standard corrections to the mass of the W boson and the effective leptonic mixing angle
 - ⇒ for large non-standard Higgs masses the calculations approach the SM prediction (decoupling)
 - $\Rightarrow\,$ large mass differences between the charged and neutral Higgs states lead to large contributions

<u>Outlook</u>

- calculation of higher order (two-loop) non-standard terms of the precision observables
- analyse higher order effects on Higgs physics for LHC results