
Higgs beyond the Standard Model
an Effective Field Theory approach

– Young Scientist Workshop Ringberg –

Claudius Krause

Ludwig-Maximilians-Universität München

17 July 2014

Based on: “Complete Electroweak Chiral Lagrangian with a Light Higgs at NLO”
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Effective Field Theories

Definition

An effective (field) theory is a (field) theory that is only valid at a given energy- or
length scale.

General Physics

Basic assumption that made
physics even possible

Planetary motion with point
masses

No QM for motion of cars

High Energy Physics

Heavy particles cannot be
produced at low energies

Quantum fluctuations not
relevant at large distances

Can be used when looking for
new physics
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Effective Field Theories
Effective Field Theories can be used in two different approaches:
The top-down and the bottom-up approach
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High-energy (UV) theory is known

Heavy particles are integrated out
We are left with an effective low-energy description of the given UV theory
Example: Fermi-Theory for weak interactions

W−

µ−
νµ

e−

ν̄e

←→

µ−

νµ

e−

ν̄e
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Effective Field Theories
Effective Field Theories can be used in two different approaches:
The top-down and the bottom-up approach

High-energy (UV) theory is not known

Write down most general set of interactions possible
Ingredients: low-energy fields and symmetries
A well-defined power-counting tells you which interactions are more important

→ Since any UV theory can be mapped on this basis the bottom-up approach
provides a model independent analysis of new physics
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The Standard Model as Effective Field Theory

Standard Model Lagrangian

LSM = −1

4
BµνB

µν − 1

4
W a
µνW

aµν − 1

4
GA
µνG

Aµν

+ q̄i /Dq + ¯̀i /D`+ ūi /Du + d̄ i /Dd + ēi /De

+ Dµφ
†Dµφ+ µ2φ†φ− λ

2
(φ†φ)2

− (q̄Yuφ̃u + q̄Ydφd + ¯̀Y`φe + h.c.)

electroweak symmetry breaking: φ ∼ U

(
0

v + h

)

Assume that the SM is a low-energy effective theory of some new physics.

How do the terms at higher orders look like?
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Building up the higher order terms

Ingredients:

all SM particles (due to observation: include h as well)

pattern of symmetry breaking

3 Goldstone bosons for the W±/Z masses

linear realization

scalar h and Goldstones form
Higgs-doublet φ

theory becomes renormalizable

NLO is given by dimension 6
terms
(Buchmüller, Wyler [’86 Nucl. Phys. B];

Grzadkowski et al. [hep-ph/1008.4884;

JHEP])

→ not the most general ansatz

non-linear realization

include h as scalar singlet

theory stays non-renormalizable
for arbitrary couplings

NLO will be discussed now

→ more general ansatz
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The non-linear realization

The Goldstone bosons ϕ are described by:

L =
v2

4
〈∂µU†∂µU〉,

where

U = exp

{
2i

Taϕa

v

}
.

This was used in Chiral Perturbation Theory (χPT)

U → lUr†, where l , r ∈ SU(2)L,R
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Effective Lagrangian at leading order

In the SM we have SU(2)L × U(1)Y → U(1)em.

The Higgs sector exhibits an additional (custodial) symmetry that enlarges
the symmetry to SU(2)L × SU(2)R → SU(2)V=L+R .

→ At lowest order, we can use the chiral Lagrangian to describe the dynamics.

The Goldstones are described by U and become the longitudinal components
of the gauge bosons. In unitary gauge:

v2

4 〈(DµU)(DµU†)〉 = g2v2

4 W+
µ W µ− + (g2+g ′2)v2

8 ZµZ
µ

LLO =
1

2
(∂µh)(∂µh)− V

(
h
v

)
+

v2

4
〈(DµU)(DµU†)〉 an

(
h
v

)n
+ iΨ̄f /DΨf − v

(
Ψ̄f Yj,fUΨf + h.c.

) (
h
v

)j
− 1

2
〈GµνGµν〉 −

1

2
〈WµνW

µν〉 − 1

4
BµνB

µν
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4 W+
µ W µ− + (g2+g ′2)v2

8 ZµZ
µ

LLO =
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2
(∂µh)(∂µh)− V

(
h
v

)
+

v2

4
〈(DµU)(DµU†)〉 an

(
h
v

)n
+ iΨ̄f /DΨf − v

(
Ψ̄f Yj,fUΨf + h.c.

) (
h
v

)j
− 1

2
〈GµνGµν〉 −

1

2
〈WµνW
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4
BµνB

µν
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Effective Lagrangian at next-to-leading order

Which of the higher order terms are the most important?

LLO is not renormalizable in the traditional sense.

It is renormalizable in the modern sense – order by order in an effective
expansion:

The counterterms are included at NLO.

→ The basis of NLO-operators is at least given by the counterterms of the one
loop divergences.

We identify v2

Λ2 ' 1
16π2 . −→ Λ ' 4πv ' 3TeV
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Power-counting
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Power-counting

D ∼ p2L+2−X− 1
2 (FL+FR )−NV

(ϕ
v

)B (h

v

)H

Ψ̄
F 1
L

L Ψ
F 2
L

L Ψ̄
F 1
R

R Ψ
F 2
R

R

(Xµν
v

)X

define chiral dimensions with

2L + 2 = dp + X + 1
2 (FL + FR) + NV

[∂µ]x = [Dµ]x = 1 [g ]x = [g ′]x = 1 [y ]x = 1

[h ]x = [U]x = 0 [A]x = [W ]x = [Z ]x = 0 [Ψ]x = 1
2

→ This allows a full classification of all NLO operators.

Example:

OD0,1 = 〈DµU†DµU〉〈DνU†DνU〉 F
(
h
v

)
[OD0,1]x = 4 −→ NLO
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Conclusions

Effective Theories in general:

Effective Field Theories use the fact that nature comes at different scales.

Known high-energy theories can be simplified at low energies.

Unknown new physics can be looked for in a model-independent way.

Applied to Higgs physics:

A full set of next-to-leading order operators was constructed.

It was explained in detail what systematics defines next-to-leading order of
the effective expansion with the use of a power-counting formula.

The relation of the power-counting to the concept of chiral dimensions was
explained.

Since we haven’t seen any new physics at the LHC this is a very promising path of
current research.
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Example for operators

Classes of counterterms at 1 loop:

g2UD2H, UD4H, gUHXD2, g2UHX 2,

y2UHDΨ2, yUHD2Ψ2, ygUHΨ2X and y2Ψ4UH.

For convenience we define:

Lµ = iUDµU
†, τL = UT3U

†,

P± = 1
2 ± T3, P12 = T1 + iT2, P21 = T1 − iT2,

η = (νR , eR)T and r = (uR , dR)T .

OLL1 = y2(q̄γµq)(q̄γµq)F

∑
: 64 operators (+ h.c.)

F
(
h
v

)
= 1 + a1

(
h
v

)
+ a2

(
h
v

)2
+ . . . F̃

(
h
v

)
= ã1

(
h
v

)
+ ã2

(
h
v

)2
+ . . .
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