Max-Planck-Institute for Physics July 2014

Search for neutrinoless double beta decay with scintillating bolometers

Nahuel Ferreiro Iachellini

Rare transition among isobaric elements:

• 2ν DBD: useful for testing nuclear models

$$\frac{1}{T_{1/2}^{2\nu}} = G^{2\nu}(Q,Z)|M^{2\nu}|^2$$

 $G^{2
u}(Q,Z) \Rightarrow$ phase space of outgoing leptons $M^{2
u} \Rightarrow$ Nuclear Matrix Element

 0\nuDBD: fundamental physics, if observed would prove the Majorana nature of neutrinos.

$$\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu}(Q,Z) \mid M^{0\nu} \mid^2 \left(\frac{\langle m_{ee} \rangle}{m_e}\right)^2$$

The measurement of $T_{1/2}^{0\nu}$ would be a measurement of neutrino mass.

Nuclei for DBD study? Weizsäcker's formula for binding energy:

$$E(Z, A) = a_v A - a_s A^{2/3} - a_c \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(A-2Z)^2}{A} + \delta(Z, A)$$

IMPRS

Experimental signature

Large half-lives
$$T_{1/2} \approx 10^{18} - 10^{21}$$
 years.

- Due to the rarity of the process high sensitive detectors are required
- Sensitivity for spotting 0vDBD peak over a background B:

$$S^{0
u} = \log 2T \epsilon \frac{N_{etaeta}}{n_B} \propto \epsilon \sqrt{rac{MT}{B\Delta}}$$

 Constraints similar to those in DM search

Nuclei for DBD study?
$$S^{0\nu} \propto \epsilon \sqrt{\frac{MT}{B\Delta}}$$
:

Parent	i.a.	Q-value	T ^{2v} _{1/2}
	Rosman '98	Audi '03	Measured
Isotope	[atomic %]	[keV]	[years]
⁴⁸ Ca	0.187	4274	4.4 ^{+0.6} × 10 ¹⁹
⁷⁶ Ge	7.61	2039	(1.5 ± 0.1)× 10 ²¹
⁸² Se	8.73	2995.5	(0.92 ± 0.07)× 10 ²⁰
⁹⁶ Zr	2.8	3347.7	(2.3 ± 0.2)× 10 ¹⁹
¹⁰⁰ Mo	9.63	3035	(7.1 ± 0.4)× 10 ¹⁸
¹¹⁶ Cd	7.49	2809	(2.8 ± 0.2)× 10 ¹⁹
¹²⁸ Te	31.74	867.9	(1.9 ± 0.4)× 10 ²⁴
¹³⁰ Te	34.08	2530.3	$6.8^{+1.2}_{-1.1} \times 10^{20}$
¹³⁶ Xe	8.87	2462	(2.11 ± 0.21)× 10 ²¹
¹⁵⁰ Nd	5.60	3367.7	(8.2 ± 0.9)× 10 ¹⁸

Improve the sensitivity - Background rejection

$$S^{0
u} \propto \epsilon \sqrt{rac{MT}{B\Delta}}$$

CRESST-like detectors are feasible for double beta decay purposes

- In principle CaWO₄ could study the DBD in ⁴⁸Ca
- Unfortunately ⁴⁸Ca is poorly abundant (0.187%) and its enrichment would cost billions
- Other crystals can be chosen (ZnMoO₄,ZnSe,CdWO₄...)
- Scintillation allows to reject α which are nothing but background

 $\rm ZnMoO_4$ crystals show the peculiar possibility to reject α background by means of shape analysis (no light channel)

- Three crystals operated as bolometers
- $\blacksquare \sim 0.8 \text{Kg}$ for 36days (1.3 Kg day of $^{100} \mathrm{Mo})$
- Coincidence anticoincidence analysis to improve background reconstruction

 $bkg = 2\nu + {}^{208}Tl + {}^{40}K + {}^{65}Zn + {}^{210}Pb - {}^{210}Bi$

$T_{1/2}^{2 u}$ and $T_{1/2}^{0 u}$ sensitivity

Bolometric measurement of ¹⁰⁰Mo half-life¹:

$$T_{1/2}^{2
u} = (7.15\pm0.37(\textit{stat})\pm0.66(\textit{syst})) imes10^{18}$$
 years

In agreement with the result obtained by NEMO^2 (the most accurate available):

$$T_{1/2}^{2
u} = (7.11\pm 0.02(\textit{stat})\pm 0.54(\textit{syst})) imes 10^{18}$$
 years

Predicted sensitivity for 10Kg of $\rm ZnMoO_4$ with $\alpha\text{-rejection}$ for 1 year (CL 68%)

$$T_{1/2}^{0
u} > 1.14 imes 10^{24}$$
 years

¹L. Cardani *et al.*, J. Phys. G **41**, 075204 (2014)

 2 R. Arnold *et al.*, First results of the search of neutrinoless double beta decay with the NEMO 3 detector, Phys.Rev.Lett. 2005

Current scenario

CUORE: Search for $0\nu DBD$ with ${\rm TeO}_2$ crystals array

Specifics:

- 988 ${\rm TeO}_2$ crystals operated at ~10mK.
- Expected background in ROI 10⁻² counts/keV/kg/y, mainly due to degraded αs from surface contaminations and materials faced to the detectors.
- Expected sensitivity 2 × 10²⁶ years, or 40 100*meV* for ⟨*m_{ee}*⟩ for 5 years of exposure (it would span part of the inverted hierarchy).
- TeO_2 does not scintillate \Rightarrow no active background rejection?

The picture from neutrino oscillations

 TeO_2 are non scintillating crystals, but:

- They are transparent to light in the 350nm-IR region
- The refraction index (n ~ 2.4) seta threshold for Cherenkov light emission:
 - 1 beta 50 keV
 - 2 α 400MeV
- ~350eV of light predicted for ROI beta events (regardless detection efficiency)

The Cherenkov photons are expected to be 350nm-650nm (2.0-3.5eV)

Which thermometer best suits?

- TESs show great performances for the low energy region (some eV of baseline resolution), but their production is rather difficult and no mass production available
- NTDs (Neutron Trasmutation Doped) offer less sensitivity compared to TES but they are easly to be produced in series with standard performances. Baseline resolution ~ several hundreds eV for Light Channel

A recent measurement³ achieved to quantify the Cherenkov light emitted by beta particles in ${\rm TeO}_2$ using NTDs thermometers:

- The amount of light emitted is ~100eV at 0\u03c6 DBD region, below the level of NTDs noise. This result is roughly 50% of the predicted one (self-absorption?)
- TES sensors should fulfill the required sensitivity to achieve event by event tagging and hence background rejection

³N. Casali *et al.*, arXiv:1403.5528 [physics.ins-det]