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- physics goal and motivation
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- the test facility: GALATEA

- Top surface scanning
- alphas in Germanium Detectors
- energy spectra and pulses
- effective dead layer thickness

- Summary and Outlook
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Physics goal and motivations

Ar-ﬂy)r’f

GOAL:

characterization of
detector response
for alphas signal

Uranium

Protactinium
Thorium

Actinium

MOTIVATION:

Radium

Alpha Background:
- Lead contamination on surfaces
- serious and often limiting
- OvBB, Dark Matter searches

Francium
Radon

Astatine

Bismuth

Study alpha events in a
controlled environment
- charge trapping
- detector's dead layer

Lead

Thallium

Mercury
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SuperSiegfried:
- true coaxial n type HPGe detector

- 18 segments: 6in @, 3in z

- 19th segment unsegmented in @

Vacuum Tank

Collimators

& ~
GALATEA: ;Dz

- vacuum chamber " 1f [ &
- low penetrating sources : =1

Detector

- cryo tank to cool down the detector

- 3 motors to move 2 collimators in 3D
- alpha source placed in the top one

- electronics inside
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INTERMEZZO: signal creation in segmented Ge detectors%

Signal creation:

- radiation interacts with Ge: e-h pairs created
- go to the core electrode
- holes go to the segment electrodes

- charges induced in neighbouring seg
— possible mirror pulses /'f—-__

SN
- 2 possible scenarios: \f_ Pl

- single segment event (SIGNAL) | e

- multi segment event (BKG) E 113 : Ny

C®>
What do we obtain:

- pulses in all channel
- pulse shape analysis

- energy spectra from all channels
- spectroscopy
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Alphas heavy charged particles I241Am collimated
- they lose energy by dE/dx
- short path inside the detector
- surface events

- long pulses [low fields]

- alphas from the ?!Am

Sl IVES J;Lyer

- all with the same Energy ~ 5.6 MeV T—
- all the same penetration depth 4

-’
-

The final result depends on the combination of:

1) geometrical effect
- different incident angle

A
- different path inside the dead layer % gamma
- different energy deposited 3 :
inside the detector O : alphas
2) stochastic effect (main one) / :
- charge trapping :

: Ena
<5 MeV gy
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Alphas in energy spectra

Alpha Scan: r = 30 mm phi = 262

X

=]

241Am@ —— Core
‘g_ - ——— Segments 1 to 18
—— Segment 19 —
Alpha Bump: i
- only in the 19"

- different energy

T
H‘ ‘w i
\H
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Alphas in the pulses
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Top Surface scanning %
AVRAYDS 3o

Scanning along the radius:
- fixed angle: varying the radius with steps of few mm
- check the different paths for the charge carriers
- close to the surfaces

X point of interaction
— electrons ’ ‘
= holes \ » \

Scanning along the azimuthal angle:
- fixed radius: varying the angle with steps of few degrees
- check the effect of the Electric Field
- change on the collection efficiency

X point of interaction
— electrons
= holes
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Scanning points along the radius

%ﬂ)@és

Core Spectra for different radius and ¢@= 272°

- no bumps at small radii
— thick dead layer

- farther from the core
- |less energy recorded
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Scanning points along the radius %
Seg19 Spectra for different radius and @=272° """
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Thickness of the effective dead layer %

i JE
: >
E Energy

- E_ - Initial energy of the alpha = 5.637 MeV

- E_ - measured energy of the alpha

- fit the alpha bump with a gaussian
- get the mean of the gaussian

- dE/dx — energy loss for unit of distance: = 0.2 MeV/ym
- by an alpha particle at 5.637 MeV
- In Germanium

- d - length of the path done in a non sensitive volume
=> the thickness of an effective dead layer
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Thickness result %
Scanning along the radius 8 Ly=st
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Scanning points along the radius

Lp-Dyztt

Core Spectra for different azimuthal angle and r = 26 mm
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1078~ - closer to the metallization |~ phi=74 =
" ~ less distorted E field E::: - =

— better charge collection
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Thickness result

Scanning along azimuthal
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Summary and outlook %
(.

Conclusions:

- GALATEA: facility to scan Ge detector in vacuum

- alpha events: perfect candidates to study surface effects in Ge detectors

- difference of energy read by the core and the segment: clear tracer of
surface effects — reject these events as bkg events

- effective dead layer: extraction of the thickness from the energy spectra

What's next:
- complete top surface scanning: improve knowledge about dead layer
- complete characterization of the response to alpha particles

- define a parameter to reject alpha background based on the difference
between the core energy and the segment energy
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Vacuum Tank

Collimators




It has to be in an EMPTY space

- WHY?
- sources nearer to the detector
- possible scan with as and Bs
- detector not immersed in LN2
- less technical requirements for the
detector

- HOW?
- Turbo Pump
- big VAT valve (shutter)
- GALATEA tank — big surface
- outgassing
- tank CONDITIONING
- heating & pumping (110-130 °C)
- 2-3 weeks cycles
- after CONDITIONING:
- system pumped:
p = O(5x10° mbar)
- system not pumped:
p = O(10° mbar) for ca. 2 weeks
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It has to be cooled

- WHY?
- semiconductor detector
- cryogenic operating temperature
- HOW?
- cooling finger
- IR shield
- Cryo-tank
- automatic refilled LN2 level controller
- LCR meter for a decoupled information
- super insulation foil
- around the cryotank
- inside the tank walls

’

il T - -.'_ —— .
" R TRATEN
Wt s s
" | -_]1'- s - =
o somooemoe By \ =

NOTE: the detector should not be the coolest place in the system!!
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It has to bhe turned ON and read out

- How?
- detector equipped with readout cables
- 19" segment has a stand alone cable

- electronic board inside the tank
— reduce the noise level BUT...
PROBLEMS FOR THE VACUUM!!

- preamplifier modules

- HV connection for the detector
- LV connection

- 4 Pt100 sensors




Something has to move

- WHY?
- perform a 3D scan of the detector
- multiple sources
- HOW?
- 3 UHV compatible motors
- vertical
- horizontal
- circular

- 2 collimators
- SIDE: solidal with VM
- TOP: solidal with HM

AVRAY> S 2

Top Collimator Tungsten

segments
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Signal creation: SSE

- radiation interacts with Ge — e and h created //I“‘\ \-

- electrons go to the core electrode e e
- holes go to the segment electrodes \[——— et
- charges induced in neighbouring segments [t =]
— possible mirror pulses \f—
- 2 different situations:
- single segment events (SSE) MSE
- multi segments events (MSE) '\_
S
What do we obtain: Q//
- pulses in all channel i es—
- pulse shape analysis =1
- energy spectra from all channels \[_—— e -
- spectroscopy /’r_;h\
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