

Young Scientist Workshop July 2014, Ringberg

Alpha interactions in high purity germanium detectors

Lucia Garbini - GeDet group

Outline

- Introduction

- physics goal and motivation

- Experimental set up

- the detector prototype: SuperSiegfried
- the test facility: GALATEA

- Top surface scanning

- alphas in Germanium Detectors
- energy spectra and pulses
- effective dead layer thickness
- Summary and Outlook

Physics goal and motivations

$\Delta_p \cdot \Delta_q \ge \frac{1}{2} t$

GOAL:

characterization of detector response for **alphas signal**

MOTIVATION:

Alpha Background:

- Lead contamination on surfaces
- serious and often limiting
- $0\nu\beta\beta$, Dark Matter searches

Study alpha events in a controlled environment

- charge trapping
- detector's dead layer

Shooting alpha particles on detector prototypes inside a test facility

SuperSiegfried:

- true coaxial n type HPGe detector
- 18 segments: 6 in ϕ , 3 in z
- 19th segment unsegmented in ϕ

GALATEA:

- vacuum chamber
 - low penetrating sources
- cryo tank to cool down the detector
- 3 motors to move 2 collimators in 3D
 - alpha source placed in the top one
- electronics inside

Signal creation:

- radiation interacts with Ge: e-h pairs created

- electrons go to the core electrode
- holes go to the segment electrodes
- charges induced in neighbouring seg
 - → possible mirror pulses
- 2 possible scenarios:
 - single segment event (SIGNAL)
 - multi segment event (BKG)

What do we obtain:

- pulses in all channel
 - pulse shape analysis
- energy spectra from all channels
 - spectroscopy

Alphas = heavy charged particles

- they lose energy by dE/dx
- short path inside the detector
 - surface events
 - long pulses [low fields]

- alphas from the ²⁴¹Am

- all with the same Energy $\sim 5.6~\text{MeV}$
- all the same penetration depth

The final result depends on the combination of:

1) geometrical effect

- different incident angle
 - different path inside the dead layer
 - different energy deposited inside the detector

2) stochastic effect (main one)

- charge trapping

gamma

Counts

Energy

alphas

< 5 MeV

Alpha Scan: r = 30 mm phi = 262

Scanning along the radius:

- fixed angle: varying the radius with steps of few mm
- check the different paths for the charge carriers
 - close to the surfaces
 - **X** point of interaction
 - → electrons
 - → holes

Scanning along the azimuthal angle:

- fixed radius: varying the angle with steps of few degrees
- check the effect of the Electric Field
 - change on the collection efficiency
- × point of interaction
- \rightarrow electrons
- → holes

n-type

Ap. Dg > t

Scanning points along the radius

 $A_{p} \cdot A_{g} \ge \pm t$

Seg19 Spectra for different radius and φ = 272°

- $E_a \rightarrow$ initial energy of the alpha = 5.637 MeV
- $E_m \rightarrow$ measured energy of the alpha
 - fit the alpha bump with a gaussian
 - get the mean of the gaussian
- $dE/dx \rightarrow$ energy loss for unit of distance: = 0.2 MeV/µm
 - by an alpha particle at 5.637 MeV
 - in Germanium
- d → length of the path done in a non sensitive volume
 => the thickness of an effective dead layer

Scanning along the radius

Scanning along azimuthal

Conclusions:

- GALATEA: facility to scan Ge detector in vacuum
- alpha events: perfect candidates to study surface effects in Ge detectors
- difference of energy read by the core and the segment: clear tracer of surface effects → reject these events as bkg events
- effective dead layer: extraction of the thickness from the energy spectra

What's next:

- complete top surface scanning: improve knowledge about dead layer
- complete characterization of the response to alpha particles
- define a **parameter to reject alpha background** based on the difference between the core energy and the segment energy

BACKUP SLIDES

GALATEA: a closer look inside!

\rightarrow WHY?

- sources nearer to the detector
 - possible scan with αs and βs
- detector not immersed in LN2
 - less technical requirements for the detector

\rightarrow HOW?

- Turbo Pump
- big VAT valve (shutter)
- GALATEA tank \rightarrow big surface
 - outgassing
 - tank CONDITIONING
 - heating & pumping (110-130 °C)
 - 2-3 weeks cycles

- after CONDITIONING:

- system pumped:
 - p = O(5x10⁻⁹ mbar)
- system not pumped:

 $p = O(10^{-5} \text{ mbar})$ for ca. 2 weeks

Ap. Dg > 1 t

→ WHY?

- semiconductor detector
 - cryogenic operating temperature

→ HOW?

- cooling finger
- IR shield
- Cryo-tank
 - automatic refilled LN2 level controller
 - LCR meter for a decoupled information - **super insulation foil**
 - around the cryotank
 - inside the tank walls

NOTE: the detector should not be the coolest place in the system!! YSW July 2014 Ringberg

- How?

- detector equipped with readout cables
 - 19th segment has a stand alone cable
- electronic board inside the tank
 - → reduce the noise level BUT... **PROBLEMS** FOR THE VACUUM!!
 - preamplifier modules
 - HV connection for the detector
 - LV connection
 - 4 Pt100 sensors

Ap. Dg>it

Something has to move

Ap. Dg > 1 t

→ WHY?

- perform a **3D scan of the detector**
 - multiple sources

→ HOW?

- 3 UHV compatible motors
 - vertical
 - horizontal
 - circular
- 2 collimators
 - SIDE: solidal with VM
 - TOP: solidal with HM

Tungsten segments

Signal creation:

- radiation interacts with Ge \rightarrow e and h created
 - electrons go to the core electrode
 - holes go to the segment electrodes
 - charges induced in neighbouring segments
 - → possible **mirror pulses**
- 2 different situations:
 - single segment events (SSE)
 - multi segments events (MSE)

What do we obtain:

- pulses in all channel
 - pulse shape analysis
- energy spectra from all channels
 - spectroscopy

SSE

