The upgrades of the ATLAS pixel detector

Stefano Terzo

Max-Planck-Institut für Physik München

Young Scientist Workshop Ringberg Castle 17th July 2014

The original inner tracker of ATLAS

Lightly n-doped silicon:

- n-doped (– charge) pixels
- p-doped (+ charge) backside

A reverse bias voltage is applied:

- silicon depletion from the backside (pn junction)
- $\Delta V_{bias} > V_{dep} \rightarrow$ full depletion
- depleted region = sensitive volume
- A particle passing through the depleted region creates electron-hole pairs which drift to the electrodes

Lightly n-doped silicon:

- n-doped (– charge) pixels
- p-doped (+ charge) backside

A reverse bias voltage is applied:

- silicon depletion from the backside (pn junction)
- $\Delta V_{bias} > V_{dep} \rightarrow$ full depletion
- depleted region = sensitive volume

 A particle passing through the depleted region creates electron-hole pairs which drift to the electrodes

Lightly n-doped silicon:

- n-doped (– charge) pixels
- p-doped (+ charge) backside

A reverse bias voltage is applied:

- silicon depletion from the backside (pn junction)
- $\Delta V_{bias} > V_{dep} \rightarrow$ full depletion
- depleted region = sensitive volume

 A particle passing through the depleted region creates electron-hole pairs which drift to the electrodes

Lightly n-doped silicon:

- n-doped (– charge) pixels
- p-doped (+ charge) backside

A reverse bias voltage is applied:

- silicon depletion from the backside (pn junction)
- $\Delta V_{\rm bias} > V_{\rm dep} \rightarrow$ full depletion
- depleted region = sensitive volume
- A particle passing through the depleted region creates electron-hole pairs which drift to the electrodes

Lightly n-doped silicon:

- n-doped (– charge) pixels
- p-doped (+ charge) backside

A reverse bias voltage is applied:

- silicon depletion from the backside (pn junction)
- $\blacktriangleright \ \Delta V_{\rm bias} > V_{\rm dep} \rightarrow \mbox{full depletion}$
- depleted region = sensitive volume
- A particle passing through the depleted region creates electron-hole pairs which drift to the electrodes

- Pixel surface segmentation: -
 - precise two dimensional spatial information
- Guard ring structures to smoothly drop the potential at the edge of the sensor
 Readout chip coupling (bump bonding)

- Pixel surface segmentation:
 - precise two dimensional spatial information
- Guard ring structures to smoothly drop the potential at the edge of the sensor
- Readout chip coupling (bump bonding)

- Pixel surface segmentation:
 - precise two dimensional spatial information
- Guard ring structures to smoothly drop the potential at the edge of the sensor
- Readout chip coupling (bump bonding)

The inner tracker upgrade plan

The inner tracker upgrade plan

The inner tracker upgrade plan

z (m)

Young Scientist Workshop 16th - 19th July 2013

Why a fourth layer?

- Mantain and improve performances lost due to current detector degradation:
 - radiation damage
 - module failure
- Improve tracking, vertexing and b-tagging:
 - proximity to the interaction point
 - larger extension along the beam line
 - improve track measurement

- Cope with pile-up at high luminosity
 - The new IBL will be tolerant to higher occupancy without saturation

The Insertable B-Layer (IBL)

14 support structures (staves) to hold 32 new front-end chips each

- Mixed sensor technology:
 - 200 µm thick planar n-in-n silicon sensors
 - 230 µm thick 3D n-in-p silicon sensors
- Full φ coverage by tilting staves by 14°
 Overlap of the inactive regions
- ► Coverage in |η| <2.8</p>
- No overlap possible due to limited space
 - Recover z coverage with slim edge sensors

The Insertable B-Layer (IBL)

14 support structures (staves) to hold 32 new front-end chips each

- Mixed sensor technology:
 - 200 µm thick planar n-in-n silicon sensors
 - 230 µm thick 3D n-in-p silicon sensors
- Full ϕ coverage by tilting staves by 14°
 - Overlap of the inactive regions

dopec n-type

The Insertable B-Layer (IBL)

14 support structures (staves) to hold 32 new front-end chips each

- Mixed sensor technology:
 - ► 200 µm thick planar n-in-n silicon sensors
 - ► 230 µm thick 3D n-in-p silicon sensors
- Full \u03c6 coverage by tilting staves by 14°
 - Overlap of the inactive regions
- ► Coverage in |η| <2.8</p>
- No overlap possible due to limited space
 - Recover z coverage with slim edge sensors

Slim edge planar pixel sensors for IBL

No overlap possible along the beam direction for the inner layer → new slim edge design

Initial design

1.1 mm dead area

Reduced guard rings and edge cut

450 µm dead area

Pixels shifted behind the guard rings

• Dead area is reduced to 200 μ m

Slim edge planar pixel sensors for IBL

edge

No overlap possible along the beam direction for the inner layer \rightarrow new slim edge design

Initial design

- 1.1 mm dead area
- Reduced guard rings and edge cut
 - 450 µm dead area

n-in-n

Slim edge planar pixel sensors for IBL

cutting

edge

No overlap possible along the beam direction for the inner layer → new slim edge design

- Initial design
 - 1.1 mm dead area
- Reduced guard rings and edge cut
 - 450 µm dead area
- Pixels shifted behind the guard rings
 - Dead area is reduced to 200 µm

The new readout chip

FE-I3 FE-I4 VS 50×400 μm² Smaller pixel pitch $50 \times 250 \ \mu m^2$ $1 \times 1 \text{ cm}^2$ $2 \times 2 \text{ cm}^2$ 160 row **Bigger** area 336 row × × 18 columns 80 columns $5 \times 10^{15} n_{eq}/cm^2$ $1 \times 10^{15} n_{eq} / cm^2$ Radiation hardness in-pixel storage column higher local drain in pixel hit architecture rate storage buffering

trigger

Young Scientist Workshop 16th - 19th July 2013

Stefano Terzo (MPI für Physik)

data out 160Mb/s

From IBL to the inner layers of Phase II

A smaller pixel cell to reduce the occupancy

Young Scientist Workshop 16th - 19th July 2013

From "n-in-n" to "n-in-p" sensors

- Depletion from the backside
- Guard rings on the backside
- Double sided process
 - \rightarrow Pixel can be shifted below the guard rings

- Depletion from the pixel side
- Guard rings on the pixel side
- Single sided process
 - \rightarrow Cost effective to cover large areas

A new solution is necessary to reduce the dead area

Planar active edge sensors for HL-LHC

Present IBL design:

- n-in-n sensor with 200 µm edge (pixel shifted under the guard rings)
- Phase II alternatives:
 - n-in-p sensor with 125 µm active edge (only one Bias Ring)
 - n-in-p sensor with 50 µm active edge (Floating Guard Ring)

Backside implantation extended to the edges

Edge efficiency

FE-I3, 50 μm active edge

FE-I3, 125 μm slim edge

N-in-p quad modules for the outer layers

- Planned full module geometry for phase II
 - No guard ring structures between the 4 chips
 - Fully active area between the 4 chips

N-in-p quad modules for the outer layers

 $\label{eq:Quad} \begin{array}{l} \mbox{Quad module:} \\ 4\times \mbox{ readout chips connected to a bigger sensors} \end{array}$

- Planned full module geometry for phase II
 - No guard ring structures between the 4 chips
 - Fully active area between the 4 chips

First tests performed on pseudo quad module interconnected to IBL FE-I4 chips

Summary and outlook

IBL, the 4th pixel layer in ATLAS has been successfully inserted:

- closer to the interaction point
- featuring the new FE-I4 chip
- improved radiation hardness
- New module designs are necessary to cope with the HL-LHC environment:
 - reduced occupancy
 - radiation hardness
 - increased active area (for the innermost layers)
- N-in-p active/slim edge sensor are under investigation for the HL-LHC upgrade:
 - > 50 μm active edge sensors show efficiency even outside the pixel area
- First pseudo quad modules have been assembled and characterized