

Search for top squarks using spin correlation measurements with the ATLAS detector

Nicolas Köhler (TUM)

Max-Planck-Institute for Physics (Werner-Heisenberg-Institut)

July 18th, 2014

Introduction to Supersymmetry

- Symmetry between fermions and bosons
- No SUSY sparticles observed so far in SM mass range → broken symmetry
- SUSY close to TeV energy scale is one way to resolve the hierarchy problem
- Introduce quantum number R-parity to avoid proton decay → existence of lightest supersymmetric particle (LSP)

SM particles and MSSM sparticles (from Mike Flowerdew)

- Top squarks should be light ($\lessapprox 1~{\rm TeV}$)
- LHC has center-of-mass energy of $\sqrt{s} = 8$ TeV (2012)
- $\rightarrow~$ Potential sensitivity up to stop masses of 1 TeV
 - SUSY with neutralino $\tilde{\chi}^0_1$ as LSP gives dark matter candidate

Introduction	Analysis	Results
00000		0000

- There is a variety of top squark decays
- Main production processes (with two lepton decays) explored by ATLAS

from ATLAS-CONF-2013-065

from ATLAS-CONF-2013-048

Recent exclusion limits from ATLAS Problems of $\tilde{t} \rightarrow t + \tilde{\chi}_1^0$ -Search:

- Small BR of $t \rightarrow b + W^+$ $\rightarrow b + l^+ + \nu_l$ for dileptonic decay (BR($t\bar{t} \rightarrow W^+W^- \rightarrow$ $l^+l^-\nu_l\bar{\nu}_l$) = $\frac{4}{81}$ for $l^{\pm} = e, \mu$)
- Small cross section for on-shell top production
- Light top squarks (stealth stops, $m_{\tilde{t}} \gtrsim m_t$) not excluded, since signature is very similar to top guarks

from ATLAS-CONF-2013-065

Spin correlation measurements

Top quarks are mainly produced via gluon fusion at the LHC

- Mahlon, Parke (arXiv:1001.3422v2 [hep-ph])
 - Without orbital angular momentum: due to gluon fusion tt
 -pairs with the same helicity are dominant
 - -- Top quarks decay before they hadronize ($\Gamma_t > \Lambda_{\text{OCD}}$)
 - -- W boson has helicity 0 or ± 1
 - -- Direction of spin of top quark is related to direction of flight of lepton
- Spins of $t\bar{t}$ -pairs are correlated (fermions) while spins of $t\bar{t}$ -pairs are not

Results 0000

Measurement of $\Delta\phi$ distribution in ATLAS

- Gregory Mahlon, Stephen J. Parke: "Spin correlations can be easily observed by looking at the distribution of the difference in the azimuthal angles, $\Delta \phi$, of the dileptons decay products of the top quarks in the laboratory frame"(arXiv:1001.3422v2 [hep-ph])
- tt
 -system does not need to be reconstructed
- Top quarks have to decay leptonically (into electrons or muons)

Results

Spin correlation measurements

- $f_{\text{SM}} = N_{\text{A}=\text{SM}} / (N_{\text{A}=\text{SM}} + N_{\text{A}=0})$
- $m
 m \to \ \it f_{SM} = 1.19 \pm 0.09 \pm 0.15$ (from ATLAS-CONF-2013-101)
- $\rightarrow\,$ No sign for non-SM physics with $\mathcal{L}=4.6~\textit{fb}^{-1}~\text{of data}$
 - Top squarks have no spin \rightarrow no correlation

→ Measure $\Delta \phi$ between final state leptons (e⁺e⁻, $\mu^+\mu^-$, e[±] μ^\mp) for $\mathcal{L} = 21 \text{ fb}^{-1}$ and compare with spin-1/2 $t\bar{t}$ -production, stops should look like the uncorrelated case (A = 0)

Results

- Exactly 2 opposite charged leptons (isolated and with $p_T > 15$ GeV): e^+e^- , $\mu^+\mu^-$ or $e^\pm\mu^\mp$
- At least two jets (at least one of them has to be a *b*-jet)
- Invariant mass $|m_{\rm II}-m_{\rm z}|>10~{\rm GeV}$ (Z-veto) and $m_{\rm II}>15~{\rm GeV}$
- Missing transverse energy $E_{T}^{\rm miss} > 30~{\rm GeV}$ for e^+e^-, $\mu^+\mu^-$

•
$$H_T = \sum_{\text{lept}} p_T + \sum_{\text{jets}} p_T > 130 \text{ GeV}$$

for $e^{\pm} \mu^{\mp}$

Results

- Exactly 2 opposite charged leptons (isolated and with $p_T > 15$ GeV): e^+e^- , $\mu^+\mu^-$ or $e^\pm\mu^\mp$
- At least two jets (at least one of them has to be a *b*-jet)
- Invariant mass $|m_{\rm II}-m_{\rm Z}|>10~{\rm GeV}$ (Z-veto) and $m_{\rm II}>15~{\rm GeV}$
- Missing transverse energy $E_T^{\rm miss} > 30~{\rm GeV}$ for e^+e^-, $\mu^+\mu^-$

•
$$H_T = \sum_{\text{lept}} p_T + \sum_{\text{jets}} p_T > 130 \text{ GeV}$$

for $e^{\pm} \mu^{\mp}$

Results

- Exactly 2 opposite charged leptons (isolated and with $p_T > 15$ GeV): e^+e^- , $\mu^+\mu^-$ or $e^\pm\mu^\mp$
- At least two jets (at least one of them has to be a *b*-jet)
- Invariant mass $|m_{\rm II}-m_{\rm z}|>10~{\rm GeV}$ (Z-veto) and $m_{\rm II}>15~{\rm GeV}$
- Missing transverse energy ${\it E}_{\rm T}^{\rm miss} > 30~{\rm GeV}~{\rm for}~{\rm e}^+{\rm e}^-,~\mu^+\mu^-$

•
$$H_T = \sum_{\text{lept}} p_T + \sum_{\text{jets}} p_T > 130 \text{ GeV}$$

for $e^{\pm} \mu^{\mp}$

Results

- Exactly 2 opposite charged leptons (isolated and with $p_T > 15$ GeV): e^+e^- , $\mu^+\mu^-$ or $e^\pm\mu^\mp$
- At least two jets (at least one of them has to be a *b*-jet)
- Invariant mass $|m_{\rm II}-m_{\rm z}|>10~{\rm GeV}$ (Z-veto) and $m_{\rm II}>15~{\rm GeV}$
- Missing transverse energy $E_T^{\rm miss} > 30~{\rm GeV}$ for e⁺e⁻, $\mu^+\mu^-$

•
$$H_T = \sum_{\text{lept}} p_T + \sum_{\text{jets}} p_T > 130 \text{ GeV}$$

for $e^{\pm} \mu^{\mp}$

Results

- Exactly 2 opposite charged leptons (isolated and with $p_T > 15$ GeV): e^+e^- , $\mu^+\mu^-$ or $e^\pm\mu^\mp$
- At least two jets (at least one of them has to be a *b*-jet)
- Invariant mass $|m_{\rm II}-m_{\rm z}|>10~{\rm GeV}$ (Z-veto) and $m_{\rm II}>15~{\rm GeV}$
- Missing transverse energy ${\it E_T^{miss}}>30~{\rm GeV}$ for e^+e^-, $\mu^+\mu^-$

•
$$H_T = \sum_{\text{lept}} p_T + \sum_{\text{jets}} p_T > 130 \text{ GeV}$$

for $e^{\pm} \mu^{\mp}$

Results

$\Delta\phi$ distributions (MC only)

all channels ($e^{\pm}e^{\mp}, \mu^{\pm}\mu^{\mp}$ or $e^{\pm}\mu^{\mp}$) signal: $m_{\tilde{t}} = 180$ GeV, $m_{\tilde{\chi}_1^0} = 1$ GeV (177928)

Systematic uncertainties: https://twiki.cern.ch/twiki/bin/ view/AtlasProtected/ SUSYSystematicUncertainties2012

Results

Looking at H_T as a second variable

•
$$H_T = \sum_{\text{lept}} p_T + \sum_{\text{jets}} p_T$$

- *H_T* is a measure of activity in event
- could be used to distiguish signal from background

Results 0000

"2D distribution" ($\Delta \phi$ vs. H_T)

signal: $\textit{m}_{ ilde{t}} = 180\,{
m GeV}, \textit{m}_{ ilde{\chi}_1^0} = 1\,{
m GeV}$ (177928)

ntroduction 000000	Analysis 0000	Results
		.ህብትመያያፓር -

Setting exclusion limits

• Building probability density function (PDF): $\mathcal{P}(n, \mathbf{a}|\mu, \alpha) = \operatorname{Pois}(n|\nu) \cdot \prod_{i \in \operatorname{Syst}} N(a_i|\alpha_i, 1)$

 $\nu = \mu S(\alpha) + B(\alpha)$: expected events, *n*: observed events, $\mu = \frac{(\sigma \cdot BR)_{obs}}{(\sigma \cdot BR)_{SM}}$: signal strength, $N(a_i | \alpha_i, 1)$: normalisation distribution of systematic with nuisance parameter α_i and auxiliary measurement a_i

- Inserting data (n, a) into PDF P(n, a|μ, α) =: L(μ) gives likelihood function → Maximizing L(μ) gives signal strength μ and constrains nuisance parameters α
- Maximum likelihood ratio test method gives so-called p value (probability to observe a given signal strength caused by statistical fluctuations of SM background)

- Calculation of p values for each μ
- Exclude all signal strengths μ at 95% CL where p value is less than 0.05
- Expected exclusion limit: exclusion limit with
 - n = number of SM background events

Table of systematics

Uncertainty of channel	SR180_1_DeltaPhi
Total background expectation	58125.85
Total statistical $(\sqrt{N_{exp}})$ Total background systematic	$\pm 241.09 \\ \pm 7336.47 [12.62\%]$
main experimental systematics alpha_PILEUP alpha_JES alpha_BTAG alpha_JER	$\begin{array}{c} \pm 3902.45 \ [6.7\%] \\ \pm 1896.68 \ [3.3\%] \\ \pm 1097.44 \ [1.9\%] \\ \pm 676.49 \ [1.2\%] \end{array}$
main theoretical systematics alpha_pdfUncertTtMc alpha_st_xsec alpha_sig_xsec alpha_ttrensc alpha_ttrensc alpha_ttrasc alpha_AcerMC_PS alpha_sigGenerator alpha_pdfUncertSU_180_1	$\begin{array}{c} \pm 4172.03 \left[7.2\% \right] \\ \pm 2591.73 \left[4.5\% \right] \\ \pm 1379.23 \left[2.4\% \right] \\ \pm 1160.05 \left[2.0\% \right] \\ \pm 1139.12 \left[2.0\% \right] \\ \pm 1036.52 \left[1.8\% \right] \\ \pm 900.15 \left[1.5\% \right] \end{array}$

Table: Breakdown of the dominant systematic uncertainties on background estimates in the various signal regions. Note that the individual uncertainties can be correlated, and do not necessarily add up quadratically to the total background uncertainty. The percentages show the size of the uncertainty relative to the total expected background.

Expected exclusion limits

ightarrow 2D fit improves expected exclusion limits pprox 24%

Results 000●

Expected exclusion limits for different stop masses

ightarrow 2D fit improves expected exclusion limits

Results 000●

Expected exclusion limits for different stop masses

\rightarrow 2D fit improves expected exclusion limits

Summary and Outlook

- Light top squarks ($ilde{t}
 ightarrow t$ (on-shell) $+ ilde{\chi}^0_1$) not excluded
- Analysis to search for light top squarks using spin correllations
- Included all experimental and theoretical systematics
- 2D Fit improves expected exclusion limits
- Next step: Looking into data

Thanks for your attention!

Event selection

	$e^+e^-/\mu^+\mu^-$ - final state	$e^{\pm}\mu^{\mp}$ - final state	
	exactly 2 opposite charged leptons		
Leptons	e $^\pm$ e $^\mp$ or $\mu^\pm\mu^\mp$	$\mid e^{\pm}\mu^{\mp}$	
	$p_{\tau} > 15$ GeV (one with $p_{\tau} > 25$ GeV)		
	$ \mathbf{e}^{\pm}$: $ \eta < 2.47$ (medium), μ^{\pm} : $ \eta < 2.4$		
lata	min. 2 with $p_{ au} > 25~{ m GeV}$		
Jeis	min. 1 b-Jet (70% efficiency)		
Overlan	jets within $\Delta R = 0.2$ of e^{\pm} removed		
Ovenap	leptons within $\Delta {\it R}=0.4$ of jets removed		
Invariant mass	$ m_{\parallel}-m_{z} >10~{\rm GeV},$		
invariant mass	$m_{\prime\prime}>15~{ m GeV}$		
Transv. Energy	$E_T^{\rm miss} > 30~{ m GeV}$		
$H_T = \sum_{\text{lept}} p_T + \sum_{\text{jets}} p_T$		$H_T > 130 \text{ GeV}$	
Trigger	e24vhi_medium1 for e^{\pm} , mu24i_tight for μ^{\pm}		

see also ATLAS-CONF-2013-101

additional event selection in SUSYTools-00-03-21

TPileupReweighting::SetDataScaleFactors(1./1.09) for nominal tree for jets: SUSYObjDef::IsTileTrip, SUSYObjDef::IsGoodJet, BCHTool, JVFcutNominal = 0.5

Using other variables in 2D Fit

Using other variables in 2D Fit

Using other variables in 2D Fit

2D expected limits: $0.390419_{-0.115342}^{+0.185182}$ (95% CL)

 $m_{\rm eff} = H_T + E_T^{\rm miss}$ $= \sum_{T} \rho_T + \sum_{T} \rho_T + E_T^{\rm miss}$ lept jets ATLAS Work in progress Expected CLs - Median 0.8 Expected CLs $\pm 1 \sigma$ Expected CLs ± 2 of 0.6 0.4 0.2 0.1 0.3 0.4 0.5 0.7 0.8 signal strength μ_{sig}

2D expected limits: $0.353652^{+0.161698}_{-0.105463} \text{ (95\% CL)}$

Backup Correlation matrix for SU_180_1 (medium BCH), channels: *ee*, $\mu\mu$, $e\mu$, all

B/U 5

different final states without any further cut (tight BCH) beforeFit

different final states without any further cut (medium BCH) beforeFit

more distributions (tight BCH)

more distributions (tight BCH)

more distributions (medium BCH)

more distributions (medium BCH)

Backup Helicity of the W Bosons in $t\bar{t}$ decays

Backup Helicity of the W Bosons in $t\bar{t}$ decays

