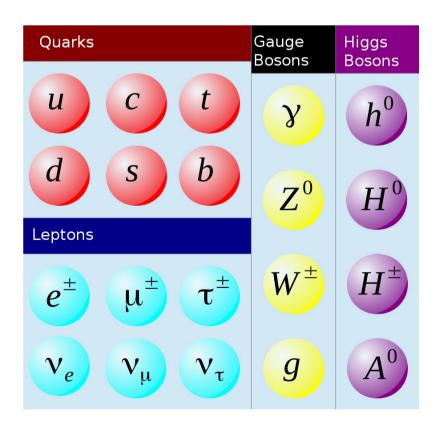
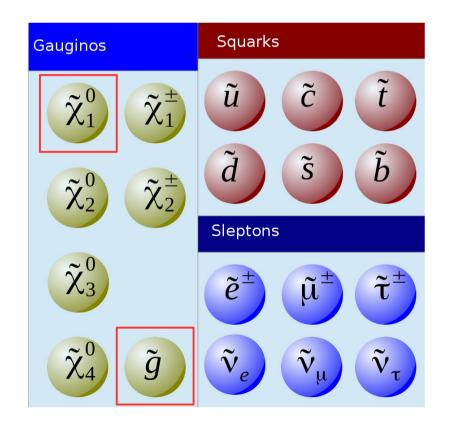


Reinterpretation of ATLAS Searches for Supersymmetry in the Context of R-Parity Violating Models


Presentation by Dominik Krauss, supervised by Mike Flowerdew



Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Introduction to SUSY

- Symmetry between fermions and bosons
- Each standard model particle gets a superpartner
- Spin of the superpartner = spin of the SM particle +- $\frac{1}{2}$
- All other properties like charges are the same except mass
 => SUSY is a broken symmetry

Introduction to R-Parity Violation

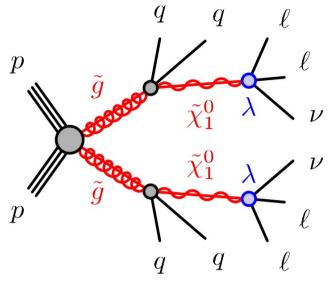
- R-parity:
 - +1 for standard model particles
 - -1 for SUSY particles
 - Conserved in the MSSM to prevent proton decay
- R-parity violated (RPV) => lightest supersymmetric particle (LSP) unstable
- Superpotential with the RPV terms => describe LSP decay:

$$W_{RPV} = \frac{1}{2} \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \frac{1}{2} \lambda'_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k + \mu_i H_u L_i$$

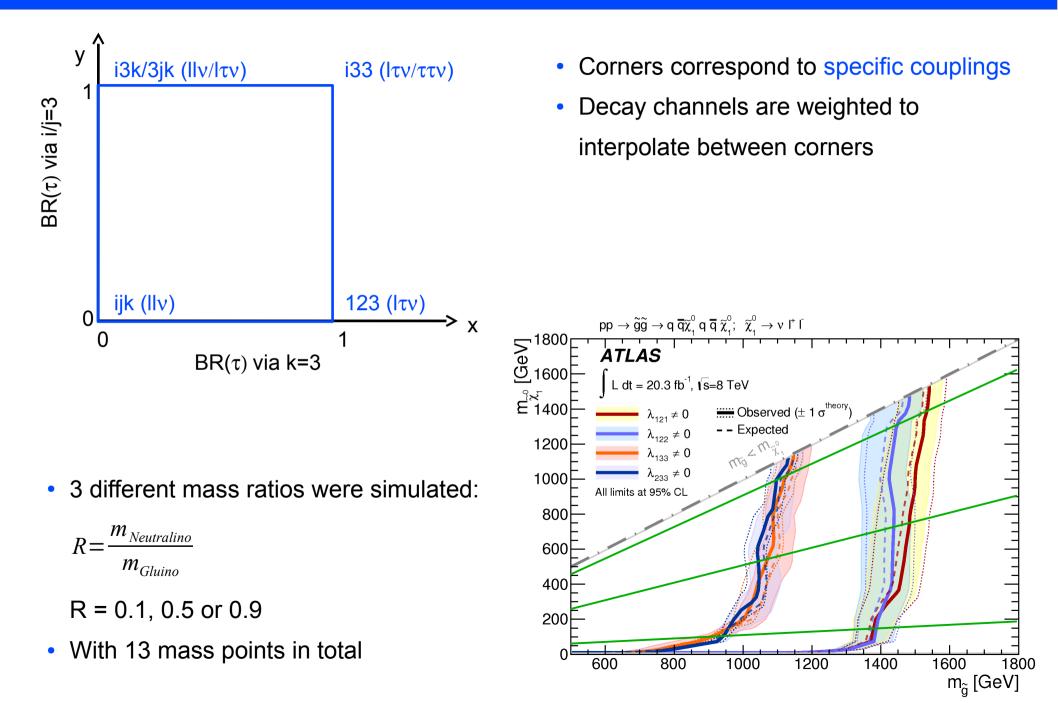
LLE: Neutralino \rightarrow 2 leptons + 1 neutrino LQD: Neutralino \rightarrow 1 lepton / neutrino + 2 quarks

Decay of the proton: UDD (1st generation) + LLE or LQD
 => We assume λ" = 0 (might plausibly be forbidden by a new symmetry)
 => No proton decay

RPV Parameters


- Superpotential for leptonic RPV: $W_{RPV} = \frac{1}{2} \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k$
- 9 LLE parameters (λ) and 27 LQD parameters (λ ')
 - Big parameter space to be investigated
 - All parameters compete with each other and could be ≠ 0
 => Complicated LSP decays with many channels possible
 - There is little reason to think a single coupling dominates in nature
- Most RPV analyses present results just for specific LSP decay assumptions
 - Standard approach: Investigate only one coupling at a time
 - Reasons:
 - High effort to treat all parameters
 - e, μ , τ and jets have very different experimental signatures
 - Low coverage of the RPV parameter space

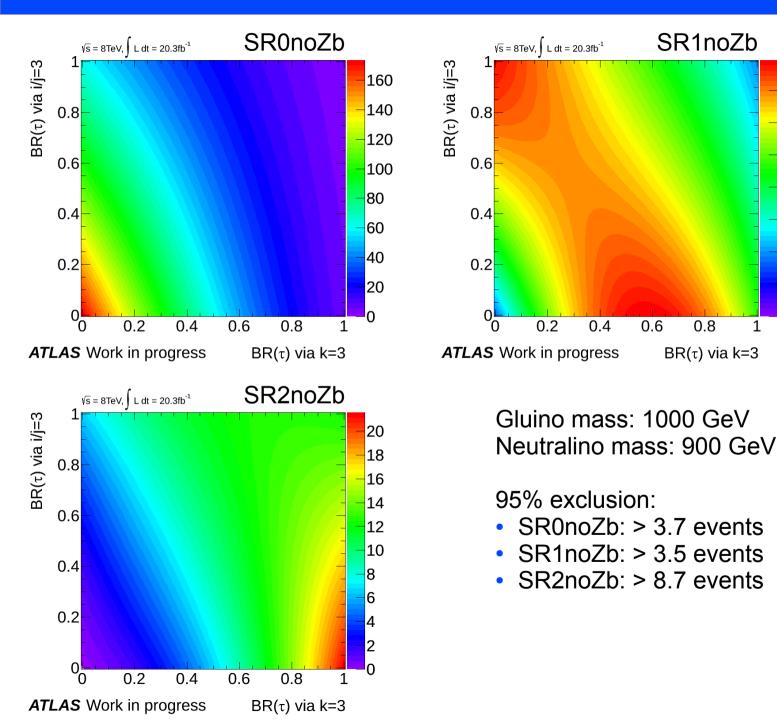
Aims and strategy


- Break the assumption of single coupling dominance for LLE and LQD couplings
- Reinterpret ATLAS searches for SUSY in RPV models
- Perform the first interpretation of prompt LQD-mediated decays by ATLAS
- Scan parameter space of different LSP decays
 => Use the event weighting technique to save computational resources
- Test the acceptance of multiple analyses to find where ATLAS searches are sensitive

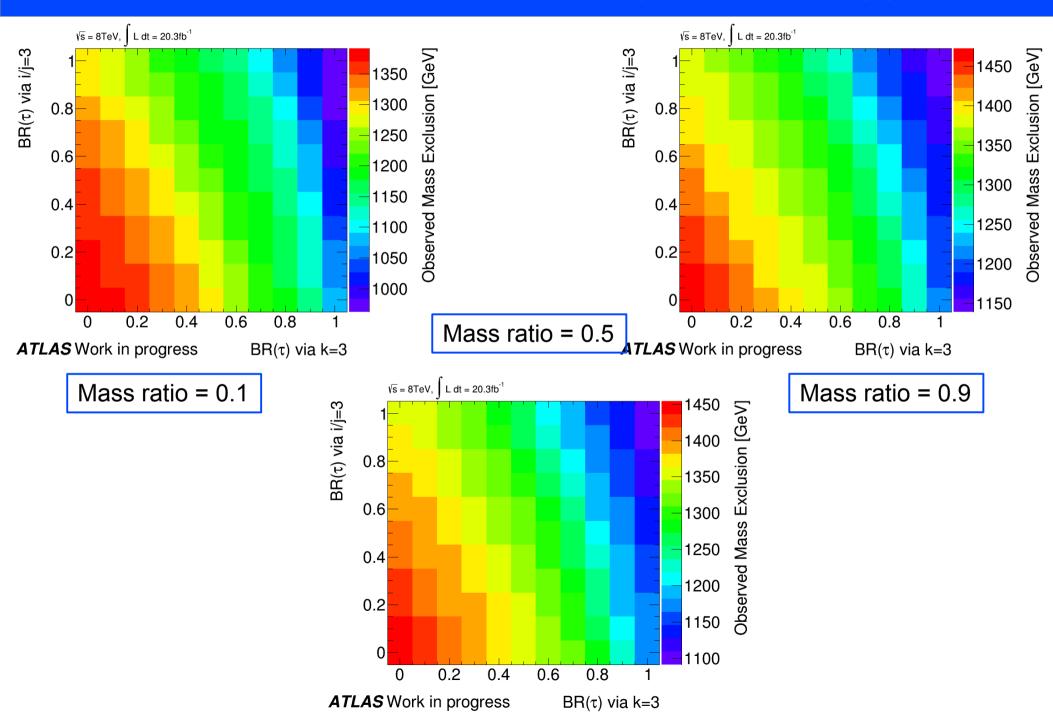
LLE Model

- Gluino pair production
- Gluino decays to 2 quarks (1st and 2nd generation) and a neutralino (LSP)
- Neutralino decays promptly via all 9 LLE couplings
- 3 types of LSP decay channels: IIν, Iτν and ττν (I: electron or muon)
- All of the decay channels are simulated simultaneously
- e and µ symmetrized to reduce the dimensionality of the parameter space
 => Empirically justified by similar performance

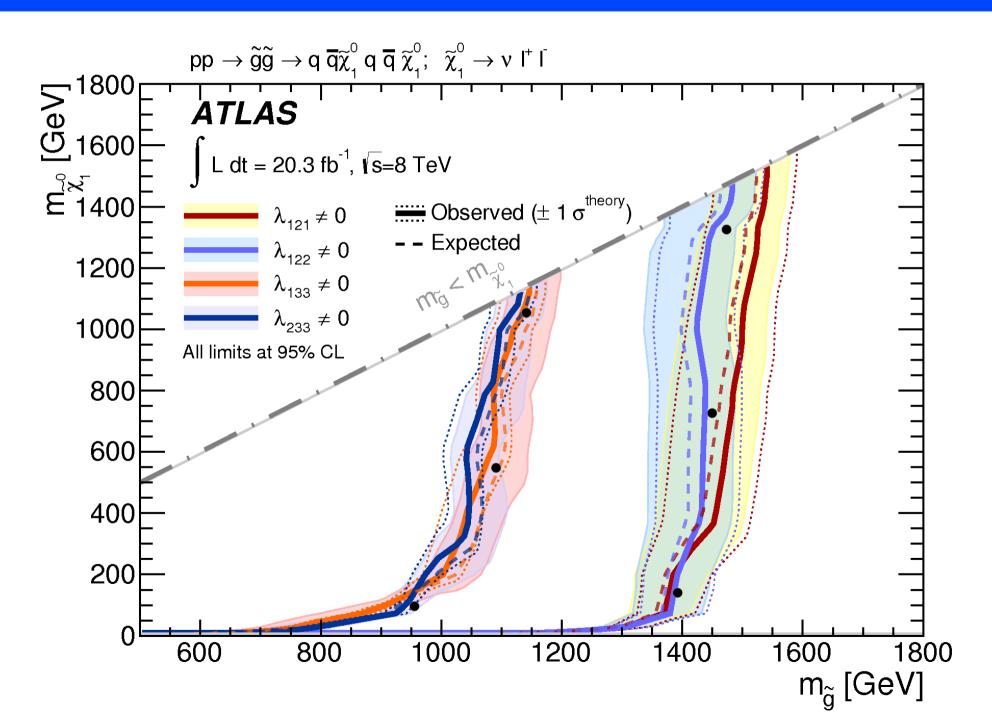
Coupling plane and grid for LLE Model



ATLAS 4L Analysis

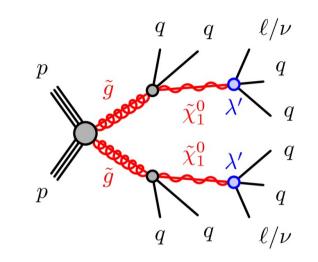

- ArXiv: 1405.5086
- Cuts: Jet е μ τ pT [GeV] >10 >10 >20 >20 <2.5 <2.47 <2.47 <2.5 |η|
- Meff = MET + $\sum pT(e)$ + $\sum pT(\mu)$ + $\sum pT(\tau)$ + $\sum pT(jets with pT > 40 GeV)$
- 9 signal regions:

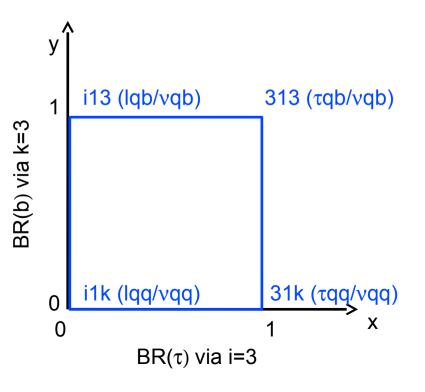
	$N(\ell)$	$N(\tau)$	Z-veto	$E_{\rm T}^{\rm miss}$ [GeV]	r	$n_{\rm eff}$ [GeV]
SR0noZa	≥ 4	≥ 0	SFOS, SFOS+ ℓ , SFOS+SFOS	>50		_
SR1noZa	=3	≥ 1	SFOS, SFOS+ ℓ	>50		_
SR2noZa	=2	≥ 2	SFOS	>75		—
SR0noZb	≥ 4	≥ 0	SFOS, SFOS+ ℓ , SFOS+SFOS	>75	or	>600
SR1noZb	=3	≥ 1	SFOS, SFOS+ ℓ	or	>400	
SR2noZb	=2	≥ 2	SFOS	>100	or	>600
	$N(\ell)$	$N(\tau)$	Z-requirement	$E_{\rm T}^{\rm miss}$ [GeV]		
SR0Z	≥ 4	≥ 0	SFOS	>75		_
SR1Z	=3	≥ 1	SFOS	>100		_
SR2Z	=2	≥ 2	SFOS	>75		_


Signal Yields: Shape of the SRs

Observed Mass Exclusion (Preliminary)

Comparison With Existing Results

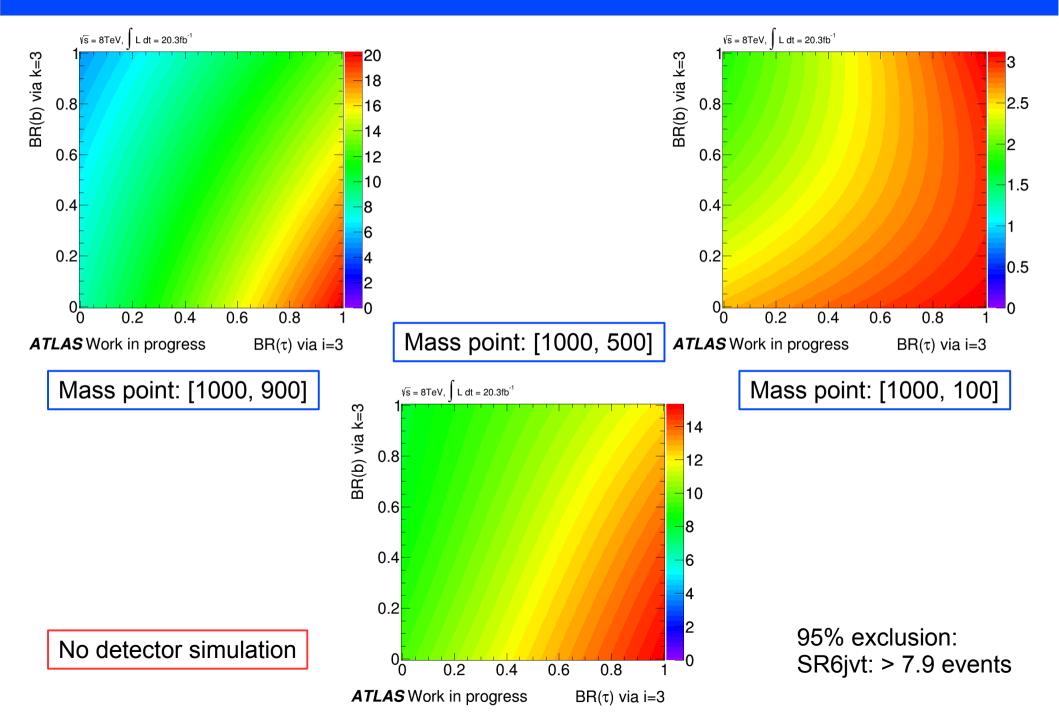



LQD Model

- Gluino pair production and neutralino as LSP
- LSP decays promptly via LQD couplings
 - "Only" 18 of 27 couplings included
 - BRs of decay channels with top quarks depend on stop mass
 Not included to avoid additional parameter
- 6 different decay channels:

lqq	τqq	vqq
lqb	τqb	vqb

• Different coupling plane compared to LLE:


ATLAS 0L Analysis

- Classic search for squark and gluino production with RPC decays
- Final states: 0 leptons + 2-6 jets + MET
- Events with isolated electrons and muons are rejected
- Taus are reconstructed as jets
- meff(N) = scalar sum of the pT of the leading N jets and MET
- Part of the signal regions:

Requirement	Signal Region								
Requirement	4jl-	4jl	4jm	4jt	5j	6jl	6jm	6jt	6jt $+$
$E_{\rm T}^{\rm miss}[{\rm GeV}] >$	160								
$p_{\rm T}(j_1) \; [{\rm GeV}] >$	130								
$p_{\rm T}(j_2) \; [{\rm GeV}] >$	60								
$p_{\rm T}(j_3) \; [{\rm GeV}] >$	60								
$p_{\rm T}(j_4) \; [{\rm GeV}] >$	60								
$p_{\rm T}(j_5) \; [{\rm GeV}] >$	_				60				
$p_{\rm T}(j_6) \; [{\rm GeV}] >$	_							60	
$\Delta \phi(\text{jet}_{1,2,(3)}, \mathbf{E}_{\text{T}}^{\text{miss}})_{\text{min}} >$	0.4								
$\Delta \phi(\mathrm{jet}_{i>3}, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$	0.2								
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} \; [{\rm GeV}^{1/2}] >$	10					_			
$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j}) >$		_	0.4	0.25	0.2 0		0.25	0.15	
$m_{\rm eff}({\rm incl.}) \ [{\rm GeV}] >$	700	1000	1300	2200	1200	900	1200	1500	1700

Table from: ArXiv 1405.7875

Truth yields for SR6jvt

Summary

- Searches for RPV SUSY typically assume a single dominant coupling
- Sensitivity to mixed couplings is being investigated
- LLE model:
 - Variation on existing model for 4L analysis
 - First mass limits as a function of branching ratios obtained
 - Further cross-checks in progress
- LQD model:
 - First test of prompt LQD decays by ATLAS
 - RPC analyses have good sensitivity
 - Further analysis with simulated + reconstructed events to come