R&D for Super-LHC: smaller diameter MDT high rate tests at the GIF@CERN

Why?

- Super-LHC: the LHC upgrade plan foresees a luminosity increase of ~10x;
- If the background scales with the luminosity, at Super-LHC we will have to cope with 10x higher rates;
- The **ATLAS MDT chambers** suffer at high rates because of:
 - Degradation of the muon detection efficiency due to high occupancy;
 - Degradation of the spatial resolution due to space charge fluctuations.
- To cope with high rates @SLHC we can **reduce** the diameter of the tubes because:
 - Occupancy reduced of x2.3 due to shorter drift time
 - Space charge less critical because we work in a region where the gas behaviour is more linear

MDT operating limits: 500 Hz/cm2 (ATLAS max rate * safety factor 5)

Small tube design

- 4 times more tubes can be packed in the same space, however limited space available for gas and electronics connections;
- First tests @MPI with cosmic rays in 2007;
- Test in high rate environment (Gamma Irradiation Facility – GIF) at CERN in spring 2008

The setup for GIF tests

The setup at the GIF

DAQ

Source Cs 137 590 GBq

LHCb MWPC chamber

- 20 M events
- Threshold scan: 34, 36, 38 mV
- HV scan: 2700, 2745, 2760 V
- Counting rate scan: 50, 800, 1100, 1400 Hz/cm²

Gas

GIF data analysis

Hit position in small tube from tracks in ref. chambers: average distance of tracks from wire $|d_{low} + d_{up}|/2$

objectives:

- Drift time spectra
- r-t relationship
- Efficiency
- Resolution

Tracking cuts

- CL > 0.02
- |slope| < 0.3
- |d(track, wire)| < 8 mm
- |∆ slope| < 0.006

Tracking in Ref. Chambers

10 12 14 16 distance from wire

MDT residuals t0 refined

Mean y 0.0004321

14

67290

7.286

4.167

0.145

Entries

Mean x

RMS x

RMS y

10

12

 800 Hz/cm^2

1100 Hz/cm² 1400 Hz/cm²

Tracking resolution

F. Legger

Spatial resolution small tubes

- Tracking resolution σ^2_{trk} from fit of $(d_{low} d_{up})/2$ since $(d_{low} d_{up})/2$ has the same variance $(\sigma^2_{low} + \sigma^2_{up})/2$ as $(d_{low} + d_{up})/2$
- Tracking + small tube resolution $\sigma^2_{\text{small + trk}}$ from fit of r-(d_{low}-d_{up})/2
- Small tube resolution σ^2_{small} from: $\sigma^2_{small + trk} = \sigma^2_{trk} + \sigma^2_{small}$

Tracking cuts:

- CL > 0.02
- |slope| < 0.3
- |d(track, wire)| < 8 mm
- |∆ slope| < 0.006

Small tubes resolution

- Spatial resolution grows linearly for big tubes
- For small tubes, the spatial resolution does not change significantly with the hit rate

Single tube efficiency

Outlook

- R&D for small drift tubes for the ATLAS MDT chambers at the Super-LHC is on-going and promising:
 - Successful measurements at high rates
 - Lessons learned
 - Wire sag
 - Objectives achieved
 - drift time spectrum (<200 ns length)
 - space-time relationship
 - Spatial resolution (100-130 μ m)
 - efficiency (100-90%)
 - Design of a 8-layer chamber for next tests in progress

Spare slides

GIF counting rates (I)

SOURCE	Threshold	Nb. evts	Hit rate	<- (small tubes)
	(mV)		(Hz/cm ²⁾	
att. inf.	38	3772021	54.6174	
att. Inf.	36	1099982	68.9975	
att. inf.	34	1256475	71.7997	
att. 1 (shielding)	38	3772021	1032.94	
att. 1 (shielding)	36	1199981	1129.75	
att. 1 (shielding)	34	1256475	1169.96	
att. 2 (shielding)	38	1387269	806.269	
att. 2 (shielding)	36	1060907	807.611	
att. 2 (shielding)	34	1199979	863.51	
				I o get the cou
att. 1 (NO shieldin	g) 38	2481841	1427.56	150 cm^2
att. 1 (NO shieldin	g) 36	1182973	1462.7	
att. 1 (NO shieldin	g) 34	1399971	1559.61	

the counting e multiply by 2

GIF counting rates (II)

SOURCE	Threshold	Nb. evts	Hit rate	<- (small tubes)
	(mV)		(Hz/cm ²⁾	
att. 1 HV 2745 V	' 38	1545879	1277	1
att. 1 HV 2700 V	38	1499971	1224.25	
att. inf. HV 2745 V	38	1099981	68.02	
att. inf. HV 2700 V	38	1007010	68.0713	
att. inf. Atlas sett.	38	1199987	68.3454	
att. 1 Atlas sett.	38	1199981	1457.01	
att. inf./1 ToT scar	ו 44	10000		
att. inf./1 ToT scar	า 42	10000		
att. inf./1 ToT scar	า 40	10000		
att. inf./1 ToT scar	ı 38	10000		To get the counting
att. inf./1 ToT scar	n 36	10000		rate/tube multiply by
att. inf./1 ToT scar	า 34	10000		

GIF tests: shielding

drift time spectrum

LOW RATE

10/13/08

drift time spectrum

Trailing edge better explained by wire sag

LOW RATE