David Brown, Markus Elsing

Belle-2 Tracking Review Preliminary Feedback

our immediate
 impressions and
 preliminary
 recommendations

Overall Impressions

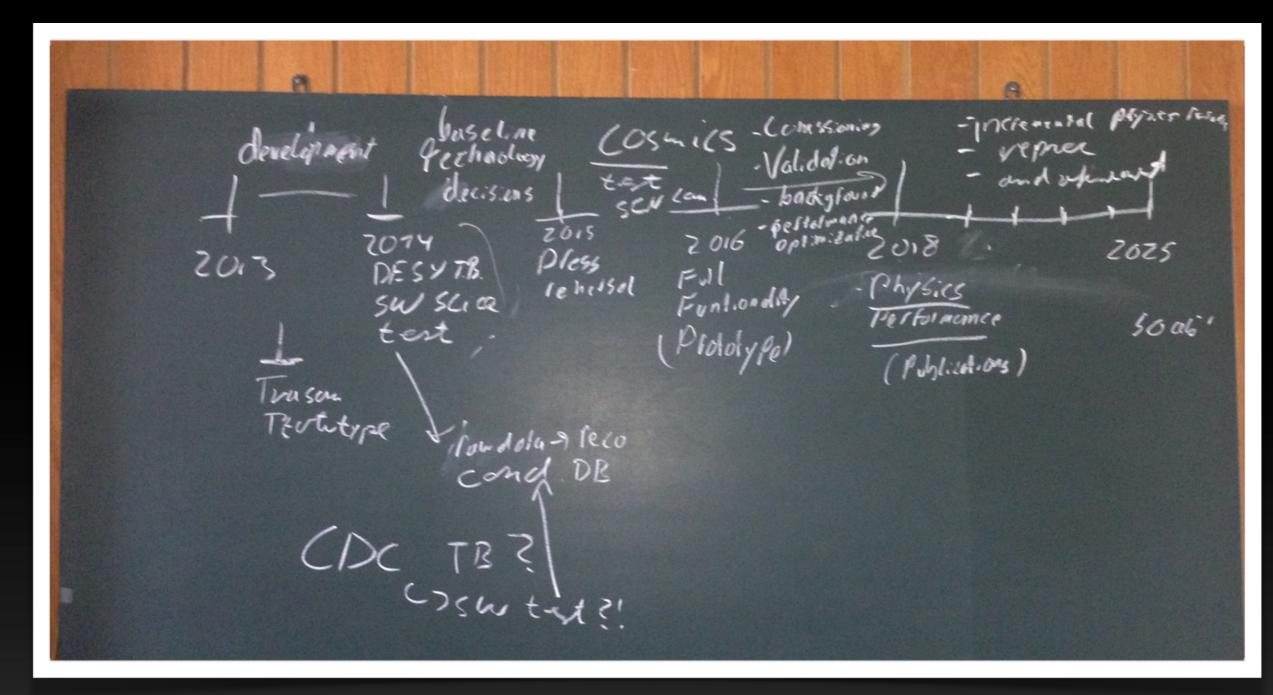
Overall Impressions

- we were impressed by the quality of the presentations
- huge amount of excellent work has been shown
- in general, the technologies under development and the choices of tracking methods seems adequate for the reconstruction problem to solve
- aim of this talk is not to give detailed feedback on individual presentations
 - → we had detailed discussion during the review
 - → detailed summary could become subject of detailed report

concentrate here on overall recommendations

main recommendation 1 : Define Roadmap with clear Milestones

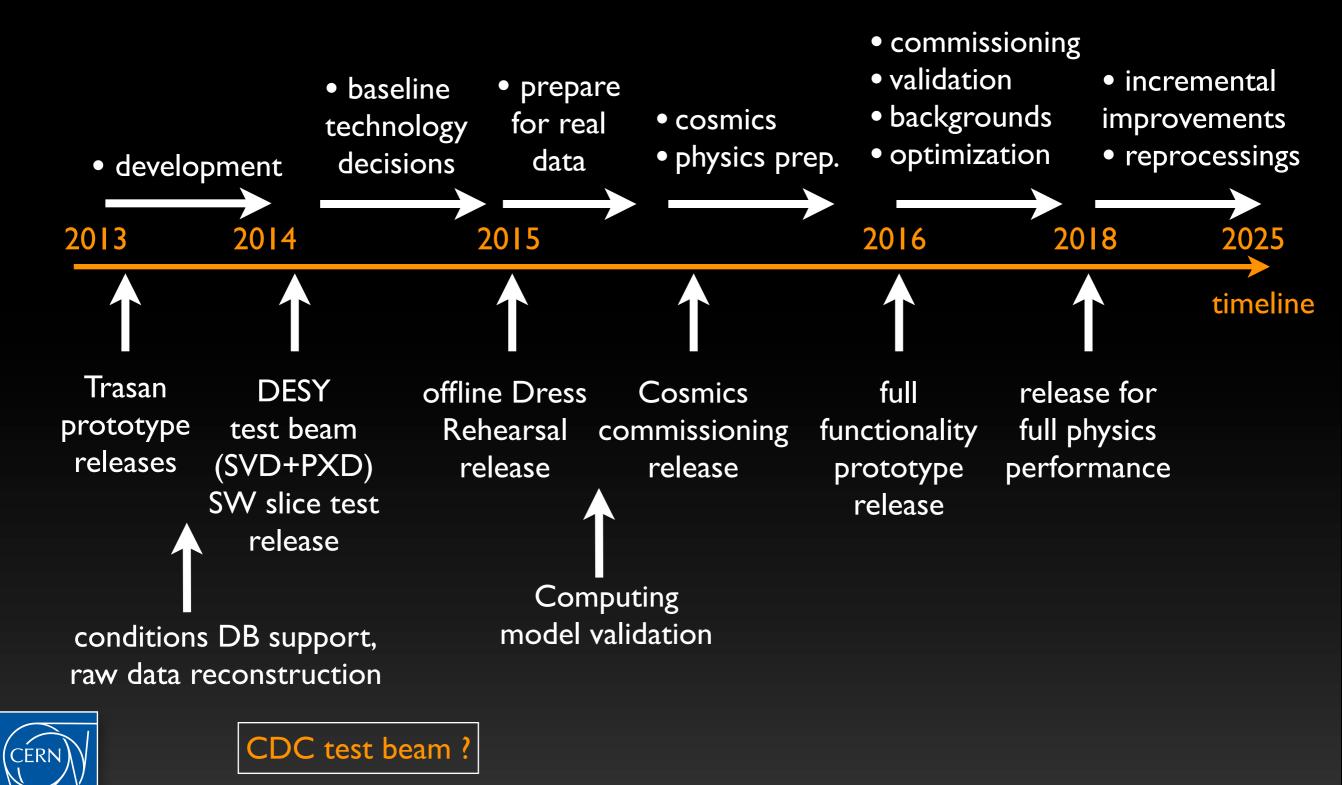
Define Roadmap with clear Milestones


• several presentations were defining short term goals

- ➡ hard to judge if individual plans are coherent overall
- ➡ unclear how to monitor progress

 based on what we learned in the review, we tried to make up an overall release plan with milestone...

Straw Man Version of a Schedule



our black board version of how this could eventually look like

David Brown, Markus Elsing

Straw Man Version of a Schedule

main recommendation 2 : **Foster Software Integration**

Foster Software Integration

large number of tracking modules were presented

- → all required tracking components are covered and many technical solutions have been developed, though sometimes manpower is limited
- ➡ not all components are at the same level of maturity
- improve on integration of tracking components into overall functional reconstruction
 - ➡ this has various aspects

Aspects of Software Integration

- document (and where lacking define) reconstruction
 Event Data Model and interfaces to common tracking tools
 - ensure modularity of code and easy module replacement to allow for required flexibility in configuring the tracking strategy
 - avoid code duplication given same functionality or to recreation of same data model objects

• prepare a release with an initial tracking prototype

- → important to get functional prototype to allow feedback from users
 - even if some of it is still truth based
 - will allow other communities to try our new software infrastructure
- → improvements then come in subsequent releases

Aspects of Software Integration

- evolve initial tracking prototype to eventually achieve best possible physics performance
 - → investigate iterative finding (CDC-to-Si vs Si-to-CDC)
 - including integration of low-momentum finder
 - ➡ investigate concept of 2nd stage track refinement
 - prioritize development of missing modules
- investigate full integration of GenFIT into Belle-II SW
 - ➡ better integration of EDM, material geometry and tool interfaces
- integrate alignment software with reconstruction
 - → prefer common code for same functionality, where possible
 - e.g., same fitter for alignment and reconstruction (GBL vs KF)
 - field transport, material and geometry, hit creation from raw ...

•••

Further Comments and Recommendations

Prioritization

• Takanori: "Highest priority is feedback to detector design"

unclear What detector questions need tracking to resolve and how those questions can be addressed in a timely way

lots of projects are going on simultaneously

- → unclear, if the prioritization is consistent and coherent
- → unclear who sets the 'global' priorities and how are they communicated

• some features are not needed for early tests/early data

→ 'triage' could be used to reduce the immediate burdens

Role of Users Feedback

- what are users impressions of new tracking ?
- what impact has tracking development work had on physics studies ?
- what design feedback is needed from users ?
 - ➡ analysis Event Data Model (EDM) ?
 - ➡ analysis interface (unchanged from Belle ?)

• Takanori: "MC production with Trasan in ~6 weeks"

- → First exposure of users to new tracking (?)
- → What useful things can they do with this ?
- → Who will help them with problems ?

• what are other user-related development milestones ?

Functionality of Analysis EDM

- clarify requirements on mDST based on well defined physics, performance and alignment/calib. use-cases
 - → e.g. boundary between full reconstruction (GenFIT) track and mDST track
 - requirements for detector commissioning and cosmics running
 - use cases for alignment (refitting ?)

Reuse of Trasan for Belle-II

appears to be an excellent intermediate solution

- → enables physics users and developers to test a functional software chain
- → meanwhile, full functional tracking prototype can be developed

investigate porting of functional modules

➡ e.g. hough finder, curl finder

Reconstruction Test on Belle-I (MC) Data

- if technically feasible, aim for a Belle-I (MC) data reconstruction test with the new software
 - ➡ allows for a benchmarking of the physics performance of the new software based on a understood detector

Technology Details for GenFIT

- investigate STEP propagator
- at lower priority, define a simplified Tracking Geometry to speed up track fitting
 - ➡ and export material model to other tracking modules
- fully integrate GBL fitter if this becomes the baseline for reconstruction and alignment

Staffing

- overall staffing levels seem reasonable in many areas
- some important projects are orphaned
 - ➡ senior person in charge of (CDC) track finding?
- new members are joining: very good!
 - → important to find appropriate projects for new people

Missing Pieces ...

- t₀ finding algorithm(s)
- CDC calibration prototype
- hit book-keeping data object
- track merging algorithm
- PXD ROI selection algorithm (offline → FPGA)
- export of Belle data/geometry to gbasf2 (?)

➡ can any of these be repurposed from Belle ???