Charged Higgs Boson searches with ATLAS - results from the CSC note, March 08 -

Thies Ehrich

Max-Planck-Institut für Physik (Werner Heisenberg Institut) München

LHC Seminar 29.04.2008

M ax _____ P lanck _____ I nstitut für Physik _____

- The ATLAS detector
- Basics of charged Higgs Bosons
- Main charged Higgs search channels
- Estimation of the tt background from data
- 8 Results

The ATLAS detector

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

- LHC: proton-proton collider, 14 TeV
- expect first collisions in Summer 08 (starting with 10 TeV)

- From LEP we know: Higgs must be light, $m_H \ge 114.4 \text{ GeV}$
- Higgs mass receives corrections from loops containing particles that couple to the Higgs field.

• if
$$\mathcal{L} = ... - \lambda_f H \overline{f} f$$
, the correction is:

$$\Delta m_H^2 = -\frac{|\lambda_f|^2}{8\pi^2} \Lambda_{UV}^2 + ...$$

 Λ_{UV} : ultraviolet momentum cutoff should be interpreted as the scale where new physics enters (m $_P \sim 10^{19}~{\rm GeV})$

need new physics at TeV scale

four options:

- Higgs is not fundamental (technicolour)
- the cut-off scale is *much* lower then m_P (extra dimensions)
- some other theories (little Higgs)
- \bullet there is a striking cancellation between the various Δm_{H}^{2} terms

 \rightarrow this cancellation of corrections to scalar masses appears actually automatically if there is a symmetry that relate fermions to bosons, a.k.a. Supersymmetry (SUSY)

$$Q|Boson\rangle = |Fermion\rangle, Q|Fermion\rangle = |Boson\rangle$$

• we consider MSSM (Minimal supersymmetric extension of the Standard Model) with two Higgs Doublets

160	
UL S	

Chiral Higgs supermultiplets in the minimal extension of SM					
	Name	spin 0	spin 1/2	$SU(3)_C$, $SU(2)_L$, $U(1)_Y$	
	H_{u}	$(H^+_u \; H^0_u)$	$(ilde{H}_u^+ ilde{H}_u^0)$	(1, 2, +1/2)	
	H_d	$(H^0_d \; H^d)$	$(ilde{H}^0_d \ ilde{H}^d)$	(1,2,-1/2)	

- in SUSY only Y=1/2 Higgs multiplets can have the necessary Yukawa couplings to give masses to up-type quarks
- Y=-1/2 Higgs multiplets needed to give masses to down-type quarks and charged leptons

- after EW symmetry breaking 5 Higgs Bosons remain:
 - h^0, H^0 : CP even
 - A^0 : CP odd
 - H^{\pm} : charged
- at tree-level the Higgs sector is fixed by:
 - m_A (or m_H^{\pm} , $m_A^2 = m_H^{\pm 2} + m_W^2$)
 - tan $\beta = v_2/v_1$ (v_i: vev of Higgs fields)
- we check two benchmark scenarios
 - scenario A (H⁺ \rightarrow Susy particles supressed)
 - scenario B (shifts m_h to high values acc. to LEP)

all values in GeV						
$m_{top}=175$ $m_{SUSY}=1000$ $A_t=1000$ $\mu=200$ $M_2=1000$ $M_3=$						
$m_{top}=175$ $m_{SUSY}=500$ $X_t=1000$ $\mu=200$ $M_2=200$ $M_3=800$						
where $A_{4} = X_{4} + \mu \tan \beta$						

CDF exclusion limits

Phys. Rev. Lett. 96, 042003 (2006)

- H⁺ upper mass limit 79.3 GeV (95% CL)
- $\bullet~{\rm tan}\beta$ region around 1-30 not covered

low mass: $m_{H^+} < m_{top} - m_b$

- \bullet charged Higgs produced by on shell top quark decay: $t{\rightarrow} H^+ b$
- at the LHC top quarks are mainly produced in pairs
- \bullet H⁺ production through single top quarks not considered

high mass: $m_{H^+} \gtrsim m_{top} - m_b$

- \bullet two different modes: gb ${\rightarrow} H^+ t, ~gg{\rightarrow} tbH^+$
- additionally for intermediate mass region $m_H \sim 170$ GeV: 20-30% contribution from t \rightarrow H⁺b (see above)

Charged Higgs Boson production and decay

A. Sopczak (ATL-COM-PHYS-2008-013)

- xsec[t $\bar{t} \rightarrow (Wb)(W\bar{b})$]: NLO
- BR(t \rightarrow H⁺b): FeynHiggs 2.6.2
- not considered: $H^+ \rightarrow W^+ h^0$

- low mass (red) almost exclusive decay: $H^+ \rightarrow \tau \nu$
- high mass (blue) most important contribution $H^+ \rightarrow tb$
- $\sigma(\text{Signal})=2\sigma_{tt}[\text{Br}(t\rightarrow \text{H}^+\text{b})][1-\text{Br}(t\rightarrow \text{H}^+\text{b})]$

mode	xsec[pb]
tī (11)	452
W+jets	912
Wt	29
s-chan	3.5
t-chan	80

- tt is the dominant background (same topology, high xsec)
- single top production also possible through EW Wtb vertex
- these modes should be less important due to small cross sections wrt. tt (diff. topo.)
- inclusive W+jets production important due to its high cross section (different topo., but high xsec)
- not shown: QCD background (very high xsec, no MC available)

CSC analyses

Light Higgs

- $\tau_{had} + W_{had}$ channel $t\bar{t} \rightarrow (H^+b)(W\bar{b}) \rightarrow (\tau_{jet}\bar{\nu_{\tau}}\nu_{\tau}b)(qq\bar{b})$ high branching ratio, m_T reconstruction, difficult to trigger
- $\tau_{lep} + W_{had}$ channel $t\bar{t} \rightarrow (H^+b)(W\bar{b}) \rightarrow (l\bar{\nu_{\tau}}\nu_{\tau}\bar{\nu_{l}}b)(qq\bar{b})$ easy trigger, m_T reconstruction, high $t\bar{t}$ background
- $\tau_{had} + W_{lep}$: $t\bar{t} \rightarrow (H^+b)(W\bar{b}) \rightarrow (\tau_{jet}\bar{\nu}_{\tau}\nu_{\tau}b)(qq\bar{b})$ easy trigger, low background, neutrinos on both sides

Heavy Higgs

• $H^+ \rightarrow tb$ channel: $gg/g\bar{b} \rightarrow t[\bar{b}]H^+ \rightarrow W_{qq}b \ [\bar{b}]l\nu_l \ bb$ full Higgs mass reconstruction, complex signature • $H^+ \rightarrow \tau \nu$ channel: $gg/g\bar{b} \rightarrow t[\bar{b}]H^+ \rightarrow W_{qq}b \ [\bar{b}]\tau_{jet}\nu_{\bar{\tau}}$ low background, m_T reconstruction, low branching ratio

- W boson resonance and top quark fully reconstructed
- b-b flavour tagging performed using b jet-lepton angular correlation and b jet charge distribution

• likelihood combination gives 68% purity

- cut on 'decay angle' $\cos \theta^* = \frac{2m_{\ell b}^2}{m_{top}^2 m_W^2} 1$ (b jet and lepton have to be on the same side)
- but we loose a lot of events by requiring 2 b jets wrt tt

• generalized transverse mass calculated for the Higgs: $(m_T^{H^+})^2 = (\sqrt{m_{top}^2 + (\vec{p}_T^{dep} + \vec{p}_T^b + \vec{p}_T^{miss})^2} - p_T^b)^2 - (\vec{p}_T^{miss} + \vec{p}_T^{dep})^2$

• finally both transverse masses are used for the significance calculation

- most difficult channel because of the neutrinos on both sides
- \bullet avoid $t\bar{t}$ enrichment by requiring only one b jet

- $\bullet\,$ signal can still be extracted as the excess of τ jets wrt SM
- but no possibility to extract any shaped variables

$gg/g\bar{b} \rightarrow t[\bar{b}]H^+ \rightarrow W_{qq}b \ [\bar{b}]l\nu_l \ bb$

- only channel which allows full Higgs mass reconstruction
- high combinatorial background from jets

$gg/g\bar{b} \rightarrow t[\bar{b}]H^+ \rightarrow W_{qq}b \ [\bar{b}]l\nu_l \ bb$

• try to find right combination of jets by combinatorial likelihood

$gg/g\bar{b} \rightarrow t[\bar{b}]H^+ \rightarrow W_{qq}b \ [\bar{b}]l\nu_l \ bb$

- physical background tt +jets is reduced by another likelihood (require 4 b jets, pdf's not shown)
- reconstruct charged Higgs mass

To evaluate systematic uncertainties, several effects where taken into account.

Most important: smearing of the jet energy scale

Uncortainty	Value	x-sec[fb]		
Oncertainty	value	S	В	
None		30	78	
au E Resolution	$0.45 \times \sqrt{E}$	32	76	
π E Scale	-5%	30	71	
	+5%	32	79	
au-tag Efficiency	$\pm 5\%$	27	77	
Jet E Resolution	$0.45\sqrt{E}, \eta < 3.2$	32	80	
	$0.63\sqrt{E}, \eta > 3.2$			
let E Scale	$+7(15)\%, \eta < (>)3.2$	40	93	
Jet E Jeale	$-7(15)\%, \eta < (>)3.2$	24	64	
b-tag Efficiency	$\pm 5\% \epsilon_{btag}$	30	76	
L ton Deinstinn	-10%	30	78	
0-tag Rejection	+10%	30	77	
μ E Resolution	$0.011/P_T \oplus 0.00017$	30	79	
E C	-1%	31	77	
μ L Scale	+1%	30	78	
μ Efficiency	$\pm 1\%$	30	78	
e E Resolution	$0.0073 \times E_T$	30	77	
e E Scole	-0.5%	30	77	
	+0.5%	31	77	
e Efficiency	$\pm 0.2\%$	30	78	
Luminosity	-3%	29	76	
Lummosity	+3%	31	80	

Background estimation from data (1)

- $\bullet~$ get clean $t\bar{t}\rightarrow$ II sample from data
 - two isolated muons (E_T in cone (0.3)<20 GeV)
 - Z veto (90 GeV ${<}m_{\mu\mu}{<}110$ GeV)
 - E_T^{miss} >40 GeV

Process	cross section (pb)	events used	events passed	expected events in 1 fb $^{-1}$
$t\bar{t} \rightarrow \mu\mu$	9.3	1265	359	2641.2
tt background	823.7	46500	23	407.4
W+1J	65.3	5000	1	13.1
W+2J	71.0	9450	1	7.7
W+3J	53.3	6500	0	<8.2
W+4J	28.0	7000	3	12.0
W+5J	15.3	5000	0	<3.1
Z+1J	172.7	3750	3	138.2
Z+2J	65.7	14500	17	77.0
Z+3J	20.7	2000	6	62.1
Z+4J	5.9	5250	18	20.1
Z+5J	2.1	2950	11	8.0
$b\overline{b}(mu20mu20)$	261	2435	3	321.6
Total BG	-	-	-	1066.8

- efficiency=28% (signal events that survive selection)
- purity=71% (1-background/all events)

Background estimation from data (2)

 $\bullet~{\rm replace}~\mu~{\rm by}~\tau$

 $\bullet\,$ scale 3-Vector of the lepton until it has $\tau\,$ mass

$$\xi^2 = \frac{E_{\mu}^2 - m_{\tau}^2}{|\vec{p_{\mu}}|^2}$$

• τ decay products fed into the athena detector simulation • '2nd order' MC effect still included

- error within 10%
- this is only due to worse jet resolution (wrt leptons)

Final combined results (all five channels)

single results (only exclusion contours)

Backup

- take some shaped histogram (i.e. higgs mass)
- model each bin as a Poisson variable with mean:

$$\begin{split} E[n_i] &= \mu L \epsilon_i \sigma_i B_i + b_i \equiv \mu s_i + b_i \\ s_i &= s_{tot} \int_{bins} f_s(x; \theta_s) dx \\ b_i &= b_{tot} \int_{bins} f_b(x; \theta_b) dx \end{split}$$

- $\bullet~\mu$ (signal strength) is the only parameter of interest
- the pdf's f_s and f_b can be obtained from MC or control samples
- systematic uncertainties can be inbluded through θ parameters

- calculate Likelihood function for each channel i: $L_i = (\mu, \theta) = \prod_j \frac{(\mu s_j + b_j)^{n_j}}{n_j!} e^{-(\mu s_j + b_j)} \prod_k \frac{u_k^{m_k}}{m_k!} e^{-u_k}$
- combine them straightforward for all channels:

$$L(\mu, \theta) = \prod L_i(\mu, \theta_i)$$

• construct profile likelihood ratio:

$$\lambda(\mu) = \frac{L(\mu, \hat{\hat{\theta}})}{L_{max}(\hat{\mu}, \hat{\theta})}$$

 $\hat{\hat{\theta}}:$ maximizes L for given $\mu,\,\hat{\hat{\theta}}{=}\hat{\hat{\theta}}(\mu)$ denominator: maximized Likelihood of full phase space

• of course $0 \le \lambda \le 1$, $\lambda = 1$ implies good agreement with hypothesis

$t\bar{t} \rightarrow (H^+b)(Wb) \rightarrow (\tau_{had}\nu b)(qqb)$

Ø

- a priori important channel: high branching ratio
- trigger: tau35i+xe50 or tau35i+xe40+3jet20:
 9-17% efficiency)

- $\bullet\,$ full reconstruction of W side $\rightarrow\,$ apply mass window cuts
- $\bullet~E_T^{miss}$ is used to calculate the p_T^{τ} of second top
- use back-to-back characteristic of top quarks

$$p_T^{top2} = \vec{p}_T^b + \vec{p}_T^{\tau jet} + \vec{p}_T^{miss}$$

- \bullet remaining events supposed to be mainly $t\bar{t}$
- many topologic variables (angles, inv. masses, ...) are combined in a likelihood discriminant
- finally the transverse Higgs mass is calculated

Thies Ehrich 32

The Standard Model Higgs Sector

One fundamental question in particle physics is:

What's the origin of mass?

Answer: introduce scalar (Higgs-)field, and break electroweak symmetry. Examples are already there:

- super conductivity (Meissner-Ochsenfeld effect)
- ferro magnetism

$$\mathcal{L}_{Higgs} = (\hat{D}_{\mu}\phi)^{+}(\hat{D}^{\mu}\phi) + m_{H}^{2}\phi^{+}\phi - \lambda(\phi^{+}\phi)^{2}$$
$$|\langle\phi\rangle| = \sqrt{\frac{-m_{H}^{2}}{2\lambda}}$$

