Measuring the Top Quark Pair Production Cross Section

Andrea Bangert, Max Planck Institute of Physics, June 3rd 2008 CSC Note: "Determination of Top Pair Production Cross Section in ATLAS", May 15th, 2008

Overview

- The Standard Model top quark
- Why measure the cross section?
- Top quark pair production
- Top-antitop decay
 - The single lepton trigger
 - b-tagging
- Hadronic decay: $tt \rightarrow jjb jjb$
- Semileptonic decay: $tt \rightarrow lvb jjb$
 - Backgrounds
 - Counting experiment
 - Jet multiplicity
- Dileptonic decay: $tt \rightarrow lvb lvb$
- Summary and Conclusion

Standard Model Top Quark

- Discovered at Tevatron in 1995
- Completed 3rd generation of fermions
- Extremely massive:
 - m_t = 172.6 ± 1.4 GeV
 - m_t ≈ 185 u
 - m_{Ag} < m_t < m_{Au}
- Top-antitop pairs produced via strong interaction
- Top decays via weak interaction, t → W b

Why is the cross section interesting?

- Measurement of cross section provides a test of perturbative QCD.
 - Non SM physics could increase the cross section significantly.
 - Non SM physics could affect the branching ratios for the various top decay channels. (t → H⁺b)

- Top production is a "standard candle".
 - Measurements involving known top properties will allow us to calibrate the ATLAS detector.
- Top pair production will be a significant background for other measurements.

Top Quark Pair Production

- Mediated by strong interaction
- Rate of pair production is proportional to cross section and luminosity:

 $dN/dt = \sigma L$

- LHC design luminosity is
 L = 10³⁴ cm⁻² s⁻¹
- Theoretical cross section is

σ_{tt} = 833 ± 100 pb

- 8 top–antitop pairs per second
- 2.5 million pairs per week
- 70 million pairs per year

Top Quark Decay

- Top decay: $t \to W b$
- W decay:
 - $W \rightarrow I v$ $\Gamma \approx 1/3$
 - $W \rightarrow j j$ $\Gamma \approx 2/3$

- Top-antitop decays:
 - "dileptonic" $tt \rightarrow W^+b W^-b \rightarrow (I^+v_Ib) (I^-v_Ib) \Gamma \approx 1/9$
 - "semileptonic" $tt \rightarrow Wb Wb \rightarrow (Iv_1b) (jjb) \Gamma \approx 4/9$
 - "hadronic" $tt \rightarrow Wb Wb \rightarrow (jjb) (jjb) \Gamma \approx 4/9$
- Decay products:
 - Leptons, neutrinos (MET), b jets, light quark jets.
- Cross section can be measured in dileptonic, semileptonic and hadronic decay channels.

Trigger Efficiency in tt→evb jjb Events

Trigger

- tt decays which produce a lepton allow the use of a single lepton trigger.
- Electron trigger "e25i"
 - Requires isolated electron with $p_T > 25$ GeV.
 - $\epsilon_{trigger} = 52.9\%$ in tt \rightarrow evb jjb
- Muon trigger "mu20"
 - Requires single isolated muon with p_T> 20 GeV
 - $\epsilon_{trigger} = 59.9\%$ in tt $\rightarrow \mu vb$ jjb
- Trigger efficiencies must be estimated from data.

b-tagging

- Purpose
 - Identification of heavy flavor jets (b)
 - Suppression of light flavor jets (u, d, s)
- Importance
 - Top quark events produce b quarks
 - Most W + jets, QCD multijet events produce only light quark jets
 - Use b-tagging to suppress significant sources of background
- Caveat
 - Requires precise alignment of inner detector
 - Several months of data-taking necessary
- **Interplay** between tt sample, b-tagging:
 - In a pure sample of tt events, every event contains two b jets
 - Use to test b-tagging performance

200 250

300

350

450

M_{iii} [GeV]

400

500

20

50

100

150

Semileptonic Decay

- $tt \rightarrow Wb Wb \rightarrow Ivb jjb$
- Selection:
 - One lepton with $p_T > 20 \text{ GeV}$
 - MET > 20 GeV
 - At least four jets
 - No b-tagging
- Selection efficiency: $\epsilon \approx 20\%$
- Reconstruct $t \rightarrow Wb \rightarrow jjb$
 - Each event contains N jets
 - Create all possible trijet combinations
 - Choose combination with highest \textbf{p}_{T} to represent $t \rightarrow jjb$
- Reconstruct $W \rightarrow jj$
 - $t \rightarrow jjb$ contains three jets
 - Three dijet combinations are possible
 - Choose dijet combination with highest p_T to represent $W \rightarrow jj$
- Use selected tt sample to study b-tagging, MET, jet energy scale

σ ≈ 24 pb

Counting Experiment

- Cross section "measurement" using streamtest "data"
 - L = 18 pb⁻¹
 - Standard Model processes
 - Monte Carlo generated events
 - Full simulation of ATLAS detector
 - Simulation of triggers
 - Data reconstruction
- Test analysis in "realistic" setting
- tt→ evb jjb
 - Apply selection cuts to "data"
 - Count number of (signal and background) events
 - Estimate number of background events
 - Using Monte Carlo samples
 - Using theoretical cross sections
 - Compute trigger and selection efficiencies

- N_{data} = 311 events
- $N_{BG} = 93$ events
- Branching ratio $\Gamma = 5/9$
- Luminosity L = 8.74 pb^{-1}
- Selection efficiency $\varepsilon_{tt} = 5.8\%$
- $\sigma_{tt} = 771 \pm 133 \text{ pb}$

Jet Multiplicity

- Cross section "measurement" using Monte Carlo "data"
- Signal: tt → evb jjb
- Require one electron and MET to collect W → ev
- Select signal: N_{jets} ≥ 4
- Selection efficiency $\varepsilon_{tt} = 5.3\%$
- Fix diboson and single top cross sections to theory.
- Select background sample by requiring N_{jets} < 2
- Use relative cross sections for W / Z production to extrapolate from N_{jets} < 2 to signal region
- $\sigma_{tt} = 717 \pm 158 \text{ pb}$

$$\sigma_{tt} = \frac{N_{data} - N_{BG}}{\Gamma_{tt} \cdot \epsilon_{tt} \cdot L}$$

- Signal: $tt \rightarrow evb jjb$
- Signal has high jet multiplicity
- Main background: W → ev + jets
- $W \rightarrow \tau v + jets$
- $Z \rightarrow ee + jets$
- Diboson production: WW
- Single top quarks, single top quarks

Differential Cross Sections

- Least squares fit
 - 4 jets, lepton, MET used as input, m_w and m_t used as constraints.
- Alternative reconstruction
 - Lepton, MET and m_w used to reconstruct W→lv. W and four jets used to reconstruct tt system.

- $tt \rightarrow lvb jjb (t \rightarrow jjb)$
- 2 b-tagged jets
- L = 1000 pb⁻¹
- Background included
- Rapidity:
 y = ½ ln [E + p_z / E p_z] 13

Dileptonic Decay

- $tt \rightarrow W^+b W^-b \rightarrow I^+vb I^-vb$
- Electron, muon triggers
- Selection
 - Two leptons of opposite charge
 - No tau leptons
 - MET > 30 GeV
 - At least two jets
 - No b-tagging
- Drell Yan Backgrounds
 - $\mathbf{Z} \rightarrow |^+|^-$
 - Veto Z boson mass
 - 85 GeV < m_{\parallel} < 95 GeV

Fake Leptons

Electrons

- tt → lvb jjb is background if jet fakes electron
- Require isolated electrons
- E_T (∆R < 0.2) < 6 GeV

Muons

- tt \rightarrow lvb jjb is background if b-jet produces μ
- Distinguish between:
 - Hard process:
 t → Wb → µvb
 - b decay: b \rightarrow Wc \rightarrow µvc

0.04

0.02

00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 ΔR (Muon|Jet)

- Require separation between µ and jet
- ∆R(µ, j) > 0.2

Measuring the Cross Section

Maximum Likelihood Method

- $N_{data} = N_s + N_{bg}$
- S(x) describes signal distribution
- B(x) describes background distribution
- $G(x) = N_s \cdot S(x) + N_{bg} \cdot B(x)$
- Maximize the log likelihood
 - $L = -\Sigma \ln G(x) + N_{data}$
- Obtain N_S and N_{bg}

Conclusion

- Measurement of σ_{tt} will be one of the first analyses performed after LHC comes online
 - Test of perturbative QCD
 - Calibration of detector
 - b-tagging performance, MET, jet energy scale
 - Background to future measurements
- Top-antitop pairs produced via strong force
- Top decays via weak force
 - **Dileptonic channel** (tt \rightarrow lvb lvb)
 - L = 100 pb⁻¹, δσ_{tt} ≈ 6%
 - Semileptonic channel (tt→ lvb jjb)
 - L = 100 pb-1, δσ_{tt} ≈ 17%
 - Single lepton trigger
 - Reconstruct $t \rightarrow jjb$ and $W \rightarrow jj$
 - Reconstruct invariant mass of top-antitop system
 - Hadronic channel (tt \rightarrow jjb jjb)
- The future looks promising!

Backup Slides

References

- ATLAS CSC Notes:
 - "Determination of Top Pair Production Cross Section in ATLAS", May 15th, 2008
 - "Triggering top quark events in ATLAS", April 22nd, 2008
 - "Light jets in tt events", May 15th 2008
 - "Flavor tagging calibration with tt events in ATLAS", March 31st, 2008
- Analysis references:
 - "Top Studies for the ATLAS Detector Commissioning", S. Bentvelsen, M. Cobal, July 2005
 - "Commissioning ATLAS using top quark pair production", W. Verkerke, I. van Vulpen
- Analysis using streamtest "data":
 - "A pre-commissioning tt cross section measurement at ATLAS", December 14th, 2007
- MET:
 - "On the missing transverse energy in semi-leptonic tt events using a kinematic fit", E. van der Kraaj
- Top quark at LHC:
 - "Heavy quarks and leptons", ATLAS Technical Design Report, May 25th, 1999
 - "Top Quark Physics", M. Beneke, I. Efthymiopoulos, M. Mangano, J. Womersley

Γ(t→Wb)

 The charged current W[±] couples to quarks q and q' with coupling given by CKM matrix element V_{qq'}.

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Luminosity

- Quantity which characterizes performance of accelerator.
 - At the LHC design luminosity is $L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- Necessary input for any cross section measurement.
- Methods of measuring luminosity:
 - Measure rate of process with large, well-known cross section.
 - $R = dN/dt = L \sigma$
 - More easily applicable to e^+e^- colliders than to hadron colliders.
 - Example: QED Babha scattering.
 - Calculate luminosity using beam parameters.
 - L = F f $\Sigma N_1 N_2 / 4\pi \sigma_x^* \sigma_y^*$
 - Beam revolution frequency at LHC is f = 11 kHz.
 - F = 0.9 accounts for nonzero crossing angle.
 - N_1 and N_2 are the number of protons in colliding bunches.
 - Caveat: bunch currents will not be very uniform.
 - σ_x^* and σ_y^* are transverse bunch widths at interaction point.
 - Caveat: beam profile measurements are necessary.
 - Typical precision is 5% 10%.
 - Use the optical theorem (ALFA, 2009).
 - Measure total rate of pp interactions R_{total}.
 - Measure rate of forward elastic scattering $dR_{elastic}/dt |_{t=0}$.
 - Protons scatter with very small momentum transfer t.
 - L · dR_{elastic}/dt $|_{t=0} = R_{total}^2 (1 + \rho^2) / 16 \pi$
 - ρ is ratio of real to imaginary part of elastic forward amplitude.
 - Typical precision is 5% 10%

Missing Transverse Energy

- **Neutrinos** do not interact with the detector.
- The initial transverse momentum of the colliding proton system is zero.
- **Conservation of momentum** requires that the net transverse momentum of all decay products must be zero.
- Assumption: transverse energy and momentum of any object except a neutrino are measured perfectly.
- $\Sigma_i E_T + E_T(v) = 0$ where subscript *i* runs over all visible particles.
- **Conclusion:** the "missing transverse energy" (MET) is the transverse energy of the neutrino.
 - $E_T(v) = MET = -\Sigma_i E_T$
 - Events which produced a neutrino will have **significant** MET.
 - Events which did **not** produce a neutrino will have little MET.
- **Caveat:** no measurement is perfect. Instrumental effects can result in energy imbalance and can 'fake' the neutrino signature.
- Use known mass of W boson and W \rightarrow Iv data to calibrate and test performance of MET reconstruction.

Object Definitions

Electrons

- p_T > 20 GeV, |η| < 2.5
- Exclude calorimeter crack: $1.37 < |\eta| < 1.52$
- Isolation based on calorimeter energy: $E_T(\Delta R < 0.2) < 6 \text{ GeV}$
- Reconstruction efficiency: $\varepsilon = 67\%$
- Purity: 97%

• Muons

- Staco algorithn
- Best combination of information from muon chambers and tracking detector
- p_T > 20 GeV, |η| < 2
- Isolation: $E_T(\Delta R < 0.2) < 6 \text{ GeV}$
- Efficiency: 88%
- Purity: 100%
- Jets
 - Reconstructed from energy depositions in calorimeter towers
 - Cone4
 - Jet is removed if $\Delta R(j,e) < 0.2$
 - p_T(j_i) > 40 GeV for I = 1, 2, 3. p_T(j₄) > 20 GeV
- b-tagging
 - IP3D+SV1 (3 dimensional impact parameter and secondary vertex algorithms)
 - W > 7.05
 - $\epsilon_{b-taq} = 60\%$ for $p_T(b) > 30 \text{ GeV}$
 - 5% uncertainty on ε_{b-taq} is expected after L = 100 pb⁻¹
- **MET** (MET > 20 GeV)
 - Cells from electron and photon clusters
 - Cells inside jets
 - Cells inside topologcal clusters which are outside identified objects
 - Contribution from muon
 - Cryostat correction

Counting Experiment in Semileptonic Channel

- $tt \rightarrow evb jjb$
- L = 8.74 pb⁻¹
 - Considered W + jets, Wbb and Wcc, single top production.
 - $N_{W+light flavor} = 58$, $N_{W+heavy flavor} = 21$, $N_{single top} = 14$
 - $\sigma_{tt} = 771 \pm 96$ (statistical) ± 93 (MC systematics) pb

Uncertainties expected for L = 100 pb⁻¹

- 50% uncertainty on normalization of W + jets, 14.7%
- 5% uncertainty on jet energy scale, 13.3%
- Initial and final state radiation, 10.6%
- Statistical uncertainty on 100 pb⁻¹, 2.7%
- Uncertainty on PDFs, 2.3%
- Electron identification efficiency, 1%
- Electron trigger efficiency, 1%

• tt \rightarrow evb jjb, L = 8.74 pb⁻¹

Jet Multiplicity

- Cuts:
 - e25i single electron trigger
 - exactly one electron
 - Electron author is egamma
 - p_T > 25 GeV
 - |η| < 2.4
 - No calorimeter isolation required
 - isEM == 0
 - Reconstructed electron must match trigger electron, $\Delta R(e_{reco}, e_{trigger}) < 0.2$
 - Overlap between jets and electron removed, ∆R(jet, e) > 0.3
 - MET > 25 GeV
 - Jets have
 - p_T > 25 GeV
 - |η| < 2.5
 - $\bullet \quad \text{Transverse mass of W} \to ev$
 - $m_T(W \rightarrow ev) = \sqrt{[(E_T(e) + MET)^2 (p_x(e) + MET_x)^2 (p_y(e) + MET_y)^2]}$
 - $m_T(W \rightarrow ev) > 45 \text{ GeV}$
- Efficiencies:
 - Efficiency of electron trigger: $\epsilon_{trigger}$ = 0.9896 ± 0.0011 "measured" using Z \rightarrow ee
 - Efficiency of inclusive W \rightarrow ev selection: $\epsilon_{W \rightarrow ev} = 0.1301 \pm 0.0022$
 - Efficiency of signal selection (N_{jets} > 4): $\epsilon_{jet multiplicity} = 0.0530 \pm 0.0014$
 - (Errors are statistical)

• Uncertainties:

- 5% uncertainty due to jet energy scale
- 5% uncertainty due to MET
- 10% uncertainty due to Monte Carlo generator
- 10% uncertainty due to QCD radiation

Monte Carlo "data"

- Generated in Athena 11.0.42
- Reconstructed in Athena 12.0.6

Estimation of inclusive W+4 jets production

for Jet Multiplicity Analysis

- Consider W \rightarrow ev and Z \rightarrow ee
- "Exclusive production of W + 1 jet" refers to production of W boson in conjunction with zero or one jets
- "Inclusive production of W + 4 jets" refers to production of W boson in conjunction with four or more jets
- Ratio of W production with respect to jet multiplicity in data:
 - R_{data}(W) = N(inclusive W + 4 jets) / N(exclusive W + 1 jet)
- Ratio of W production with respect to jet multiplicity in Monte Carlo:
 - R_{MC}(W) = N(inclusive W + 4 jets) / N(exclusive W + 1 jet)
- Ratio of Z production with respect to jet multiplicity in data:
 - R_{data}(Z) = N(inclusive Z + 4 jets) / N(exclusive Z + 1 jet)
- Ratio of Z production with respect to jet multiplicity in Monte Carlo:
 - R_{MC}(Z) = N(inclusive Z + 4 jets) / N(exclusive Z + 1 jet)
- Relative cross sections for W and Z production are well understood:
- $R_{data}(W) / R_{data}(Z) = R_{MC}(W) / R_{MC}(Z)$
- Solve to obtain number of background events attributed to W + 4 jets:
- N(inclusive W + 4 jets) = $R_{MC}(W) / R_{MC}(Z) \cdot R_{data}(Z) \cdot N(exclusive W + 1 jet)$

Counting Experiment in Dilepton Channel

- $tt \rightarrow lvb lvb$
 - Efficiency: $\varepsilon_{tt} = 11.05\%$
 - Purity = 4.3
- L = 100 pb⁻¹
 - N_{tt} = 987
 - $N_{7 \rightarrow \parallel} = 124$
 - N_{W+iets} = 47
 - N_{semileptonic tt} = 39
 - $N_{diboson} = 14$
 - $N_{\text{single top}} = 5$

Uncertainties

- Statistical uncertainty:
- Jet energy scale:
- PDF uncertainties: 2.4%
- Final state radiation:
- + 4.6%, 2.1%

3.6%

2.0%