Search for the Higgs Boson in the decay channel $H \rightarrow WW$

(Results of HG4 CSC note)

Steffen Kaiser

Physics at LHC Seminar July 1, 2008

> Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

The ATLAS Detector

SM Higgs Production

VBF ... Vector Boson Fusion

700

800

900

M_H (GeV)

1000

SM Higgs Decays

- M_H < 114.4 GeV (at 95% CL) excluded by LEP
- For $M_H < 2M_W$:
 - \circ H \rightarrow bb, $\rightarrow \tau \tau$ dominant
 - $H \rightarrow \gamma \gamma$ small but also relevant (high precission γ reconstruction)
- For $M_H > 2M_W$:
 - \circ H \rightarrow WW, \rightarrow ZZ dominant

Signal and Background Samples

Backgrounds: ₫′ b Q q a α a ر B رو W W W W لووو B g mm q znnz 00000 ۴^۳ W z W h 222200 q a α q Zjj (QCD) WWjj (EW) W+jets tī Zjj (EW)

MC Samples:

Process	Generator	σ (pb)
$gg \to H \to WW \ (M_H = 170 \ \text{GeV})$	MC@NLO	19.418
VBF $H \to WW \ (M_H = 170 \text{ GeV})$	PYTHIA/Sherpa	2.853
VBF $H \to WW \ (M_H = 300 \text{ GeV})$	HERWIG	0.936
$qq/qg \rightarrow WW$	MC@NLO/Alpgen	111.6
$gg \to WW$	GG2WW	5.26
$pp \to t\bar{t}$	MC@NLO	833
$Z \to \tau \tau + \text{jets}$	PYTHIA/ALPGEN	2015
W+jets	ALPGEN	20510

Channels and Analysis Methods

- H + 0j (H \rightarrow WW \rightarrow evµv) \circ 2D-Fit (M_T,p_T^{WW}) \circ Cut & Count
- H + 2j (H \rightarrow WW \rightarrow evµv) \circ 2D-Fit (NN,M_T) \circ 5D-Fit (M_T, $\Delta \phi_{\parallel}, \Delta \eta_{\parallel}, \Delta \eta_{jj}, M_{jj})$
- H + 2j (H \rightarrow WW \rightarrow lvqq) \circ 1D-Fit (M_H)

Lepton/Jet Reconstruction

Electrons/Muons:

- MediumElectrons: shower shape in Calo + ID track quality
- ThightElectrons: + B-layer and TRT hits + cluster isolation cuts
- Track match (d_0/σ_{d0} <10)
- Calorimeter isolation: E_T in cone($\Delta R < 0.2$) < 5 GeV, 2.5 GeV
- Track isolation: Σp_T (tracks) in cone($\Delta R < 0.4$) < 5 GeV, 3 GeV
- p_T > 15 GeV, |η| < 2.5
- Efficiency in H \rightarrow WW: (50.0 ± 0.5)% (77.1 ± 0.2)%
- Fakerate in W $\rightarrow \mu/ev + jets$: (6.7 ± 1.5) ·10⁻⁵ (1.7 ± 0.5) · 10⁻⁵

<u>Jets</u>:

- TopoCluster, Cone: $\Delta R < 0.4$, $|\eta| < 4.8$
- Efficiency ~ 95%

H + 0j (H \rightarrow WW \rightarrow evµv)

- 2D-Fit (M_T, p_T^{WW})
- Cross Check: Cut & Count
- Outlook: Multivariate Techniques
- Backgrounds: WW, t \overline{t} , Z $\rightarrow \tau\tau$, W +jets

Event Selection

- 2 isolated leptons, opposite charge, $p_T > 15$ GeV (TightElectrons)
- 12 GeV < m_∥ < 300 GeV
- Missing $E_T > 30 \text{ GeV}$
- Z $\rightarrow \tau \tau$ veto
- Jet veto ($p_T > 20 \text{ GeV}$, $|\eta| < 4.8$)
- b-jet veto ($p_T > 15$ GeV, b-weight > 4)
- σ (fb):

Selection	Selection cuts	$gg \to H$	$t\overline{t}$	WW	$Z \to \tau \tau$	W + jets
	Lepton Selection $+M_{ll}$	169.0	6501	718.12	4171	209.1
pre-	$p_T^{miss} > 30 \mathrm{GeV}$	133.2	5617	505.25	526.3	181.6
selection	$Z \to \tau \tau$ Rej.	129.8	5215	485.12	164.2	150.4
	Jet Veto	52.85	14.84	238.35	31.91	76.12
	b-veto	52.62	6.85	237.87	30.76	76.12
	$\Delta \phi_{ll} < 1.575,$					
signal region	$M_T < 600 \mathrm{GeV}$	35.7 ± 1.1	2.3 ± 1.6	85.4 ± 2.7	<1.7	38 ± 38
	$\Delta \phi_{ll} > 1.575,$					
control region	$M_T < 600 \mathrm{GeV}$	16.9 ± 0.7	4.6 ± 2.3	151.9 ± 3.6	30.8 ± 4.2	38 ± 38

LHC Seminar, July 1, 2008

Steffen Kaiser, MPI für Physik

$Z \to \tau\tau \; Veto$

Fit Strategy

Top Background:

- Shape determined on b-tagged control sample
- Cross section and shape extrapolated from b-tagged to b-vetoed region based on MC (tt - MC@NLO)

$Z \rightarrow \tau \tau$:

• Normalization and shape from $Z \rightarrow \mu\mu$ events with replacing μ 's with simulated τ 's (82 < m_{$\mu\mu$} < 98 GeV)

Fake Backgrounds (W+jets):

Shape and normalization from MC (loose isolation)

Combined fit:

- Simultaneous fit of both $\Delta \phi_{\parallel}$ bins in (M_T, p_T^{WW})
- Parameters for WW bkg allowed to float in the fit (same shape for signal and control region except for correction factor)

0 0.25

600

Signal

Systematics Studies

Toy MC with different distorted scenarios (derived on ATLFAST):

- Q² scale (factorization and renormalization raised, lowered by factor 8)
- 2 alternative top bkg models (leading order pp \rightarrow WWbb, pp \rightarrow tt $\overline{t} \rightarrow$ WWbb)
- For bkg: smear x and y components of missing E_T independently by 5 GeV

Fit Results

- Most promising for $M_{\mbox{\tiny H}}$ near the WW threshold
- Maximum significance: 7.8 σ (M_H=160GeV)
- At other masses: Larger systematic uncertainties on bkg predictions

Cross Check and Alternatives

Cut & Count:

Region	Signal, $M_H = 170 \text{ GeV} (\text{fb})$	$t\overline{t}$	WW	$Z \to \tau \tau$
Signal-like	19.61 ± 0.80	$1.14{\pm}1.14$	29.35 ± 1.59	<1.74
Control	2.27 ± 0.27	$5.71 {\pm} 2.55$	61.13 ± 2.33	4.06 ± 1.53

- Signal region: $p_T^{WW} > 10 \text{GeV}$, $M_{II} < 64 \text{GeV}$, $\Delta \phi_{II} < 1.5$, $50 < M_T < 180 \text{GeV}$
- Control region: $p_T^{WW} > 10 \text{ GeV}$, $80 < M_{II} < 300 \text{ GeV}$, $\Delta \phi_{II} > 1.5$
- Top background from b-tagged control region
- W+jets bkg neglected since only 1 event passes cuts
- Ratios of cross sections in the different regions taken from MC
- Systematic uncertainties on cross sections: WW (5%), top (9%)
- Significance (10 fb⁻¹): 7.1 σ (fit: 6.7 σ , ignoring fake backgrounds)

Multivariate Techniques:

• NN (5 variables), BDT (21 variables) under study

H + 2j (H \rightarrow WW \rightarrow evµv)

- 2D-Fit (NN, M_T)
- 5D-Fit (M_T , $\Delta \phi_{II}$, $\Delta \eta_{II}$, $\Delta \eta_{jj}$, M_{jj})
- Backgrounds: tt, WW+jets, W +jets

Higgs Production via VBF: $qq \rightarrow qqH$

Forward Tagging Jets

Signature:

- 2 forward jets with large rapidity gap
- Suppressed central jet activity
- → Only Higgs decay products in central part of the detector

2D Fit - Event Selection

- 2 isolated leptons, opposite charge, $p_T > 15$ GeV (MediumElectrons)
- Missing $E_T > 30 \text{ GeV}$
- At least 2 jets with $p_T > 20$ GeV and $|\eta| < 4.8$
- $\eta_{j1} \cdot \eta_{j2} < 0$, $|\Delta \eta_{jj}| > 3$, leptons between jets
- Z $\rightarrow \tau\tau$ veto, b-jet veto
- 50 < M_T < 600 GeV
- Signal box: $\Delta \phi_{\parallel} < 1.5$ and $\Delta \eta_{\parallel} < 1.4$, control region: the rest

Cut $[\sigma(fb)]$	Signal (170 GeV)	$t\overline{t}$	WW+jets	$Z\to\tau\tau$	W+jets
Lepton Selection	30.20	8317	838.96	2096	1323
Forward Jet Tagging	17.27	946.6	32.77	79.30	31.83
Leptons Between Jets	16.47	617.8	22.92	55.13	27.91
$Z \to \tau \tau$ Rejection	15.68	561.8	21.20	39.03	27.91
$p_T^{miss},~M_T,~m_T^{ll u}$	12.78	425.9	15.28	0	13.96
b-veto	12.67	206.72	-	-	-
signal box	9.28 ± 0.27	28.5 ± 5.7	4.75 ± 0.30	-	4.3 ± 4.3
control region	$3.02{\pm}0.15$	$89{\pm}10$	$9.78 {\pm} 0.43$	-	$7.9 {\pm} 5.0$

2D Fit - Setup

- Neural Net: $\Delta \eta_{jj}$, M_{jj} , p_T (3rd jet) in $|\eta| < 3.2$, $\eta^* = \eta_3 (\eta_1 + \eta_2)/2$
- 2D fit: NN (parameters floating), M_T (parameters fixed)
- Uncorrelated product probability density functions (PDFs)
- 2-leptons backgrounds combined in one PDF (tt, WW+jets)
- Fake backgrounds:

 PDF determined on MC sample with loose cuts
 Shape and normalization fixed in final fit
- Same bkg NN distribution in signal and control region except for slope of a linear extrapolation factor
 Signal box: Δφ₁ < 1.5, Δη₁ < 1.4

LHC Seminar, July 1, 2008

2D Fit - Results

- NN shape independent against:
 - \circ Jet energy scale changed ±5% ($|\eta|$ <2.5) and ±10% ($|\eta|$ >2.5)
 - \circ Jet p_T thresholds: 20, 30, 40 GeV
 - Q² scale uncertainty
- If bkg uncertainties in ratio NN(signal region)/NN(control region) small
 - \rightarrow Extrapolation parameter can be fixed (atm determined on MC) \rightarrow 2 scenarios: fixed and floating NN extrapolation parameter

5D Fit – Event Selection

- Event selection similar to 2D fit, changes:
 - \circ 2 jets with p_T > 15 GeV and |η| < 4.9
 - \circ Missing E_T > 20 GeV
 - $\circ |\Delta \eta_{jj}| > 2.5, m_{jj} = [600, 3000] \text{ GeV}$
 - $_{\circ}$ b-jet veto: displaced vertex significance d_0/\sigma_{d0} > 4.5
- Unbinned maximum likelihood fit in: M_T , $\Delta \phi_{II}$, $\Delta \eta_{II}$, $\Delta \eta_{IJ}$, M_{IJ}
- Multidimensional kernel estimation technique [K. Cranmer, hep-ex/0011057]
- Signal box: $|\Delta \phi_{\parallel}| < 1.5$ and $|\Delta \eta_{\parallel}| < 1.4$

5D Fit - Setup

- Fit for Higgs candidates only in b-vetoed signal box
- Extrapolate bkg from regions 2,3,4 \rightarrow 1
- WW+jets (1,2), tt (3,4)
- $f_{ee},\,f_{e\mu},\,f_{\mu\mu}$: relative fractions of events
 - Same for signal and bkg (dominant bkg's have 2 W's)
 - Same for all sample categories
- f_{bveto}: ratio #bveto/#btag for bkg
 - Same for signal box and sideband
- f_{sigbox}: ratio #sigbox/#sideband for bkg
 - Same for bveto and btag categories

 $\Delta \phi_{\parallel}$

5D Fit – PDF Shapes

<u>Signal PDF</u>:

- $\circ M_T$: 2 sided exponential \otimes Gauss
- $\circ \Delta \phi_{\parallel}, \Delta \eta_{\parallel}$: Simple Gauss
- $\circ (\Delta \eta_{jj}, M_{jj}): \quad \text{Strongly correlated} \to 2D \text{ kernel estimation pdf}$
- Only mean of M_T distribution (m_H) free in combined fit
- Independent of lepton flavor
- Largest unmodelled correlation on MC: 14%

Background PDF:

- (M_T, Δ ϕ_{\parallel} , Δ η_{\parallel}): 3D kernel estimation pdf in region 3
 (Δ η_{\parallel} , M_{||}): 2D kernel estimation pdf in region 2
- Largest unmodelled correlation on $t\bar{t}$ and WW MC < 10%

b-veto sample

5D Fit - Results

- 15k toy MC fits: 1 fb⁻¹
- Bias on N_{Signal} : < 0.8 events, compatible with 0 at M_{H} = 160 GeV
- When not fixing N_{Bkg} in fit \rightarrow error on N_{Signal} about 25% larger
- Maximum significance (1fb⁻¹): 2.5 σ at M_H = 160 GeV

$H + 2j (H \rightarrow WW \rightarrow lvqq)$

- 1D-Fit (M_H)
- Backgrounds: tt, W +jets, QCD multijets

1D Fit

- Reconstruct M_H using W mass constraint to estimate p_z of the neutrino
- Consider out-of-cone corrections to jet energies
- Signal region: $|\Delta \eta_{jj}| > 4.4$
- Control region: $|\Delta \eta_{jj}| < 4$
- S/B ~ 1/5
- Simultaneous binned fit of M_H in signal and control region
- Signal and Bkg shapes:
 - Signal: shape from MC $(M_H = 300 \text{GeV})_{\widehat{\mathfrak{g}}}^{\infty}$
 - tt: from b-tagged control sample $\frac{\pi}{2}$
 - W+jets: shape free in fit
- \rightarrow No significance calculated:
 - Large uncertainties of W+jets
 - No estimate of QCD multijet bkg

Exclusion Limits

Conclusions

- Most important backgrounds: $t\bar{t}$, WW(+jets), W+jets, $Z \rightarrow \tau\tau$ \rightarrow Estimation from data seems promising
- $H \rightarrow WW \rightarrow ev\mu v$ most promising around the WW threshold (160 GeV)
- With 0jet and 2jet channel alone a 5 σ discovery can be reached with 10 fb⁻¹ for 150 < M_H < 180 GeV
- Combined fit with shared mass parameter, independent normalization: \rightarrow Significance > 5 σ for M_H > 140 GeV

Backup Slides

B-tagging

- tt most important background \rightarrow contains 2 jets from b-quarks
- b-weight: IP3D+SV1
- Cut in 2D plane optimized with respect to significance

```
region I: weight(jet<sub>1</sub>) + 0.6 · weight(jet<sub>2</sub>) < 3</li>
region II: weight(jet<sub>1</sub>) < 8</li>
```


Pile-Up and Track Jets

- Recontruct jets based on tracks originating in primary vertex
- Fraction of events passing the central jet veto:

	H -	$\rightarrow WW$	$tar{t}$		
	no pile-up	with pile-up	no pile-up	with pile-up	
std jets $(\eta < 2.5)$	72.0 ± 1.0	63.0 ± 1.2	28.6 ± 3.4	19.7 ± 3.3	
track jets	72.0 ± 1.0	73.5 ± 1.1	28.6 ± 3.4	25.9 ± 3.6	
std jets $(\eta < 3.2)$	65.4 ± 1.0	57.0 ± 1.2	24.0 ± 3.2	16.3 ± 3.0	
combination	65.8 ± 1.0	65.9 ± 1.1	24.0 ± 3.2	23.1 ± 3.5	

$Z \rightarrow \tau \tau$ Shape from $Z \rightarrow \mu \mu$ Data

- Use only μ 's since the effect on the missing $E_{\rm T}$ is smaller
- Select clean $Z \to \mu \mu$ sample on data
- Replace μ 's with simulated τ 's which decay trough TAUOLA
- Determine shape of $Z \to \tau \tau$ distribution
- Normalization is the same due to lepton universality

Kernel Estimation Technique

- Kernel estimation pdf: provides unbinned, unbiased estimate pdf for arbitrary set of data [K. Cranmer, hep-ex/0011057]
- 1-dim keys pdf heavily used in Babar
- Multidimensional keys pdf automaticaly includes correct correlations between observables

LHC Seminar, July 1, 2008

Steffen Kaiser, MPI für Physik

Transverse Mass M_T

- $\bullet\ M_{WW}$ not reconstructible due to neutrinos
- If M_H<2M_W
 - \rightarrow (virtual) W's at rest in higgs system

 $\rightarrow m_{II}\cong m_{_{\! VV}}$

$$\rightarrow E_T^{\ell\ell} = \sqrt{(P_T^{\ell\ell})^2 + m_{\ell\ell}^2} \qquad E_T^{\nu\nu} = \sqrt{(P_T)^2 + m_{\ell\ell}^2}$$

• Transverse mass:

$$M_T = \sqrt{(E_T^{\ell\ell} + E_T^{\nu\nu})^2 - (\vec{p}_T^{\ell\ell} + \vec{P}_T)^2}$$

- Good approxiation upto $M_H = 160 \text{ GeV}$
- Can also be useful above 160 GeV

Significance Determination

• Determine likelihood ratio: $\lambda = L_{s+b}/L_{b-only}$

 $\circ L_{s+b}$ = Likelihood of full fit

 \circ $L_{\text{b-only}}\,$ = Likelihood of fit with N_{sig} fixed to 0

- Obtain the p-value by integration from λ_{Fit} to infinity
- Significance $=\sqrt{2}erfc^{-1}(2p)$

Significance Determination

- Take some histogram (e.g. higgs mass)
- Model number of entries in each bin as Poisson variable with mean:

$$E[n_i] = \mu L \epsilon_i \sigma_i B_i + b_i \equiv \mu s_i + b_i$$

$$s_i = s_{tot} \int_{bins} f_s(x; \theta_s) dx$$

$$b_i = b_{tot} \int_{bins} f_b(x; \theta_b) dx$$

- μ (signal strength) is the only parameter of interest
- $\mu {=} 0 \rightarrow$ no Higgs, $\mu {=} 1 \rightarrow$ signal rate as expected in the SM
- The pdf's fs and fb determined from MC or control samples
- Systematic uncertainties included through θ parameters
- Calculate Likelihood function for each chanel i:

$$L_{i} = (\mu, \theta) = \prod_{j} \frac{(\mu s_{j} + b_{j})^{n_{j}}}{n_{j}!} e^{-(\mu s_{j} + b_{j})} \prod_{k} \frac{u_{k}^{m_{k}}}{m_{k}!} e^{-u_{k}}$$

Significance Determination

- Combine likelihood for all channels: $L(\mu, \theta) = \prod L_i(\mu, \theta_i)$
- Construct profile likelihood ratio:

$$\lambda(\mu) = \frac{L(\mu, \hat{\hat{\theta}})}{L_{max}(\hat{\mu}, \hat{\theta})}$$

•
$$\hat{\hat{\theta}}$$
: maximizes L for given μ , $\hat{\hat{\theta}} = \hat{\hat{\theta}}(\mu)$

• denomiator: maximizes L of full phase space

$$\circ \ 0 \leq \lambda \leq 1$$

• Significance
$$\approx \sqrt{-2\ln\lambda(\mu)}$$

$H + 2j (H \rightarrow WW \rightarrow lvqq)$

Cut	W+jets	$t\overline{t}$	Signal $(M_H = 300 \text{ GeV})$
Leptonic W Selection	2353291	128654	174.27
Hadronic W Selection	134483	70872	73.26
Forward Jet Tagging	1076.8	1929	23.16
Lepton Between Jets	867.0	1679	22.93
M_{jj}	131.0	367.7	9.16
Central Jet Veto	57.98	58.24	8.43
$\Delta\eta_{j1,l}$	16.07	47.96	6.93
b-jet Veto	16.07	14.84	6.06
Trigger Selection	13.06	12.40	5.08
$167 < M_{l\nu qq} < 1000 {\rm GeV}$	13.1 ± 4.7	12.4 ± 3.4	$5.08 {\pm} 0.29$