

Search for the Standard Model Higgs Boson in Decays into Four Charged Leptons with the ATLAS Detector at the LHC

Introduction: The Higgs decay channel $H \rightarrow ZZ^* \rightarrow 4\ell$

• $H \rightarrow ZZ^* \rightarrow 4\ell$ ($\ell = \mu, e$) only search for muons and electrons \rightarrow Final states 4μ , 4e und $2\mu 2e$

- Small branching ratio

 → High reconstruction efficiency of
 muons and electrons necessary
- Clear experimental signature

Search for the SM $H \rightarrow ZZ^* \rightarrow 4\ell$

Backgrounds

- Irreducible background: SM ZZ* → 4ℓ Cannot be distinguished from signal
- Reducible backgrounds: Can be reduced by analysis
 - Z + jets: Isolation cuts
 - $Z + b\bar{b}$: Isolation and impact parameter cuts
 - tt: Isolation and impact parameter cuts

Selection

- Selection of 2 same flavour and oppositely charged electron or muon pairs
- Standard requirements for muons (electrons)
 p<sub>T_{ℓ1,ℓ2,ℓ3,ℓ4} > 20, 15, 10, 6 (7) GeV, |η| < 2.7 (2.47)
 </sub>
- Reduction background: Isolated leptons, impact parameter cut $|z_0| < 10 \text{ mm}, \frac{|d_0|}{\sigma_{d_0}} < 3.5 (6.5)$
- For M_H < 2M_Z: Distinction between lepton pairs from on-shell Z and off-shell Z*:
 - ightarrow 4 channels: 4 μ , 4e, 2 μ 2e and 2e2 μ
 - m12: Invariant mass of leading lepton pair
 - m_{34} : Invariant mass of sub-leading lepton pair

Number of expected and observed events for ($120 < m_{4\ell} < 130$) GeV:

	Signal (m _H =125 GeV)	ZZ*	$Z + jets, t\bar{t}$	Expected bkg	Observed
4μ	$\textbf{6.3}\pm\textbf{0.8}$	$\textbf{2.8}\pm\textbf{0.1}$	0.55 ± 0.15	$\textbf{3.33} \pm \textbf{0.25}$	13
2µ2e	3.0 ± 0.4	1.4 ± 0.1	1.56 ± 0.33	$\textbf{2.96} \pm \textbf{0.43}$	5
$2e2\mu$	4.0 ± 0.5	$\textbf{2.1}\pm\textbf{0.1}$	0.55 ± 0.17	$\textbf{2.65} \pm \textbf{0.27}$	8
4 <i>e</i>	$\textbf{2.6}\pm\textbf{0.4}$	1.2 ± 0.1	1.11 ± 0.28	$\textbf{2.31} \pm \textbf{0.38}$	6
total	15.9 ± 2.1	7.4 ± 0.4	$\textbf{3.74} \pm \textbf{0.93}$	11.14 ± 1.33	32

Higgs mass measurement with the ATLAS detector

- Two decay channels are available for the Higgs mass measurement: $H \to ZZ^* \to 4\ell$ and $H \to \gamma\gamma$
- ATLAS baseline method for the Higgs mass measurement: Fit of the mass distributions with simulation based template histograms "MC templates"

• Alternative method: Mass measurement in the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel with convolution method

Katharina Ecker (TU Munich and MPP Munich)

Higgs mass measurement in the $H\to ZZ^*\to 4\ell$ channel with convolution method

• Fit function:

 $F(m_{4\ell}, \sigma_{m_{4\ell}}) = \int g(m_{gen}, M_H) T(m_{4\ell} - m_{gen}, \sigma_{m_{4\ell}}) \,\mathrm{d}m_{gen}$

with

Higgs signal at generator level $g(m_{gen}, M_H)$ $m_{4\ell}$ resolution function $T(m_{4\ell} - m_{gen}, \sigma_{m_{4\ell}})$

• Two observables: $m_{4\ell}$ and $\sigma_{m_{4\ell}}$

Event by event variation of the mass measurement error

 $\sigma_{m_{4\ell}} = \sigma_{m_{4\ell}}(p_1, p_2, p_3, p_4, \sigma_{p_1}, \sigma_{p_2}, \sigma_{p_3}, \sigma_{p_4})$

 \rightarrow Use of $\sigma_{m_{4\ell}}$ per event is beneficial in the fit for low statistics

Higgs mass measurement in the $H \rightarrow ZZ^* \rightarrow 4\mu$ channel with convolution method

Shape of m_{4ℓ} resolution function T(m_{4ℓ} - m_{gen}, σ_{m_{4ℓ}}) is dependent on flavour of final state leptons:

For muons $H \rightarrow 4\mu$: Mass resolution function is Gaussian For electrons $H \rightarrow 4e/2e^2\mu/2\mu^2e$: Mass resolution function is non Gaussian due to electron Bremsstrahlung

 \Rightarrow Only considered $H \rightarrow ZZ^* \rightarrow 4\mu$ channel in the following!

• Fit function for $H \rightarrow ZZ^* \rightarrow 4\mu$ events:

$$F(m_{4\mu},\sigma_{m_{4\mu}}) = \int g(m_{gen},M_H)\cdot T(m_{4\mu}-m_{gen},\sigma_{m_{4\mu}})\,\mathrm{d}m_{gen}$$

with Gaussian mass resolution function:

$$T(m_{4\mu} - m_{gen}, \sigma_{m_{4\mu}}) = \frac{1}{\sqrt{2\pi}\sigma_{m_{4\mu}}} e^{-\frac{1}{2} \cdot \frac{(m_{4\mu} - m_{gen})^2}{(\sigma_{m_{4\mu}})^2}}$$

Search for the SM $H \rightarrow ZZ^* \rightarrow 4\ell$

Higgs mass measurement in the $H \rightarrow ZZ^* \rightarrow 4\mu$ channel with convolution method

Test of the convolution model

• Comparison convolution model with $m_{4\mu}$ distribution from MC simulation:

• Mass errors $\sigma_{m_{4\mu}}$ are underestimated and need to be scaled \Rightarrow Correction of $m_{4\mu}$ and $\sigma_{m_{4\mu}}$ with scaling factors α and β

$$T(m_{4\mu} - m_{gen}, \sigma_{m_{4\mu}}) = \frac{1}{\sqrt{2\pi}\beta\sigma_{m_{4\mu}}}e^{-\frac{1}{2}\cdot\frac{(m_{4\mu} - \alpha \cdot m_{gen})^2}{(\beta\sigma_{m_{4\mu}})^2}}$$

Katharina Ecker (TU Munich and MPP Munich)

Search for the SM $H \rightarrow ZZ^* \rightarrow 4\ell$

Higgs mass measurement in the $H \to ZZ^* \to 4\mu$ channel with convolution method

Calibration of $m_{4\mu}$ and $\sigma_{m_{4\mu}}$

- Nominal mass $m_{4\mu}$ and mass error $\sigma_{m_{4\mu}}$ are corrected with scale factors α and β
- Determination of scale factors α and β with $Z \rightarrow \mu^+ \mu^-$ events

Higgs mass measurement in the $H \to ZZ^* \to 4\mu$ channel with convolution method

Test of the convolution method with Monte Carlo simulation

• Testing the convolution method with Monte Carlo simulation of a Higgs boson with $m_H = 125 \text{ GeV}$

- Result of the test:
 - ightarrow The fit works also for low statistics
 - \rightarrow There is no bias in the fit and the expected mass resolution is about 0.6 GeV

Result Higgs mass measurement in the $H \rightarrow ZZ^* \rightarrow 4\mu$ channel with convolution method

Applying the fit with the convolution method to 2011 and 2012 $H \rightarrow ZZ^* \rightarrow 4\mu$ data candidates:

- Baseline method: 123.8^{+0.8}_{-0.8}(stat)^{+0.2}_{-0.3}(sys) GeV
- Convolution method: $123.9 \pm 0.9(stat) \pm 0.2(sys)$ GeV
- ightarrow Mass measurements with baseline and convolution method are compatible

- The H→ ZZ^{*} → 4ℓ decay channel provides very clear experimental signature and allows a precise measurement of the Higgs boson mass
- $\bullet\,$ It was one of the Higgs discovery channels in 2012 and has now a significance of 6.6 $\sigma\,$
- Higgs mass measured with the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel: $M_H = 124.3^{+0.6}_{-0.5} (\text{stat})^{+0.5}_{-0.3} (\text{sys}) \text{ GeV}$
- Alternative method, the convolution method with only $H \rightarrow ZZ^* \rightarrow 4\mu$ events: $M_H = 123.9 \pm 0.9 (\text{stat}) \pm 0.2 (\text{sys}) \text{ GeV}$
- Outlook $H \rightarrow ZZ^* \rightarrow 4\ell$ channel: Precise measurement of Spin and CP of the Higgs boson with 14 TeV data of the LHC upgrade

Backup Slides

