Measurement of the *W*-Helicity in Top-Quark Decays with the ATLAS Experiment

Cora Fischer¹, Andrea Knue², Kevin Kröninger¹, Arnulf Quadt¹, Elizaveta Shabalina¹, Philipp Stolte¹

¹Georg-August-Universität Göttingen II. Physikalisches Insitut ²Glasgow University

IMPRS workshop, July 8, 2013 Max Planck Institut für Physik, München

- 1 Introduction and Motivation
- 2 Analysis Strategy
- Evaluation of Systematic Uncertainties
 Ensemble Tests vs. Profiling

Summary/Outlook

Top-Quark Pair Production at the LHC

Strong production of $t\bar{t}$ pairs in pp collisions:

- $\mathcal{B}(t \to Wb) \approx 100\%$
- top-quark decays before hadronization
 - \rightarrow excellent test area of SM
- 3 final states: dileptonic, ℓ +jets, fully-hadronic

- example: decay in ℓ +jets channel
- $\bullet\,$ in Göttingen: studies in this channel; event selection requires at least 4 jets and 1 $b\text{-tag}\,$
- full 2011 data set (\sqrt{s} =7 TeV, \mathcal{L} =4.7 fb⁻¹)

W-Helicity Measurement in Top-Quark Decays

$$t \longrightarrow V_{tb}^{W^+} = -\frac{ig_W}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_L P_L + V_R P_R) t W_{\mu}^- \bullet$$
$$-\frac{ig_W}{\sqrt{2}} \bar{b} \frac{i\sigma^{\mu\nu} q_{\nu}}{m_W} (g_L P_L + g_R P_R) t W_{\mu}^-$$
$$b \qquad \text{red=0 in SM}$$

- SM predicts *V*-*A* structure of *Wtb* vertex
 - \rightarrow affects possible polarizations of $W\mbox{-}b\mbox{oson}$

- \Rightarrow SM expectation: $F_0 \approx 0.7$ $F_L \approx 0.3$ $F_R \approx 0$
- \Rightarrow precision measurement of these quantities tests theory of weak coupling in SM
- \hookrightarrow deviations from expectations would hint to new physics

How to measure the *W*-helicity fractions?

• spin analyser of the W-boson: $\cos \theta^*$

$$\frac{1}{N}\frac{\mathrm{d}N}{\mathrm{d}\cos\theta^*} = \frac{3}{8}\left(1 - \cos\theta^*\right)^2 F_L + \frac{3}{4}\sin^2\theta^* F_0 + \frac{3}{8}\left(1 + \cos\theta^*\right)^2 F_R$$

The Template Method

- determination of helicity fractions F_0, F_L and F_R via template-fit to data in $\cos \theta^*$ distribution
- get templates from MC and data driven estimates
- 3 signal templates and
 - 3 background templates
- perform likelihood fit to data
- Gauss Prior on normalization of background templates with corresponding uncertainty as width

Plots from JHEP06(2012)088

Evaluation of Systematic Uncertainties

Two ways of estimating systematic uncertainties:

- evaluation via ensemble tests
- evaluation via profile likelihood fit

Ensemble Tests:

- perform ensemble tests with systematic varied samples $(\pm 1\sigma)$
- look at means of parameter distributions from fit
- take difference of means as systematic uncertainty due to the particular source
- consider ensemble tests for identifying dominant systematic uncertainties
- then: perform profile likelihood analysis in order to decrease uncertainties

Profile Likelihood Fit

Profiling: template fit with additional nuisance parameters k
 → minimization of:

$$-2\ln(\mathcal{P}) = 2\sum_{m=1}^{N_{\rm bins}} (N_m - d_m \cdot \ln(N_m)) + \sum_{i=1}^{N_{\rm bkg}} \frac{(N_{B,i} - N_{B,\exp,i})^2}{\sigma_{N_{B,\exp,i}}^2} + \sum_{j=1}^{N_{\rm prof}} k_j^2$$

• need to describe "template morphing": \rightarrow number of entries N for each bin and each template as function of k

• use quadratic fit for interpolation curves • only able to profile continuous systematics 1σ up 1σ up 1σ up 1σ down -10+1k

Example: Jet Energy Scale

- use information of $\pm 1\sigma, \pm 2\sigma, \pm 3\sigma$ syst. varied samples
- variation of jet energy scale:

Example: Jet Energy Scale

• use information of $\pm 1\sigma, \pm 2\sigma, \pm 3\sigma$ syst. varied samples

Dominant uncertainties of the analysis:

- statistical uncertainty
- Jet Energy Scale (JES)
- method uncertainties: limited template statistic of pure helicity states
- signal modelling uncertainties: choice of MC generator
- background modelling (W+jets shape, heavy flavor content, multijet background shape)

Reducing the Statistical Uncertainty

- study effect of combined fit in several channels:
 - \hookrightarrow statistical uncertainty can be reduced by splitting into different b-tag bins \to constrains backgrounds
- currently chosen fit setup: combined fit in 4 channels: e+jets, μ +jets, 1 exclusive and 2 inclusive b-tags:

Profiling: Identifying Shape Uncertainties

 F_R template, e+jets, 1 excl. b-tags:

Components that do not contribute to shape uncertainty as defined above:

- 'profile acceptance':
 - \Rightarrow use nominal templates and scale with integral of systematic varied templates
 - \Rightarrow expect only influence on uncertainty (shape is the nominal one)

• Currently JES components and *b*-tagging SF components implemented in profile fit (8 nuisance parameters + 22 'acceptance' components):

Expected stat. + JES + *b*-tag SF uncertainty (from 2000 ensemble tests):

	Profiling	Ensemble Test
$\sigma(F_0)$	0.0253	0.0463
$\sigma(F_L)$	0.0152	0.0231
$\sigma(F_R)$	0.0134	0.0279

- expected uncertainties lower for profiling!
- next: include other systematics in profile fit

Evaluated uncertainties:

- statistical
- JES, *b*-tagging
- signal modelling
- ISR/FSR
- template statistic

Conservative estimate of total uncertainty:

- last publication: JHEP06(2012)088 ($\sqrt{s} = 7$ TeV, $\mathcal{L}=1.04$ fb⁻¹), combination of 4 measurements (ℓ +jets and dilepton channel of $t\bar{t}$, template method and asymmetry method)
- current precision of single measurement as good as combination in JHEP06(2012)088

Summary/Outlook

Summary:

- analysis framework completely set up and running
- identified relevant JES and b-tagging uncertainties
- expected uncertainty from these sources shown
- up to now: signal modelling uncertainty is dominant (largest single unc., evaluated via ensemble tests)
- consideration of different fit setups (e. g.: 6 channels via inclusion of 0 excl. b-tag regions in e and μ+jets channels)

Outlook:

- add more systematic uncertainties as nuisance parameters in profile fit
- next step: evaluation of background modelling uncertainties
- ullet goal is to publish results in a paper \sim fall this year

BACK UP

Standard $t\bar{t}$ Event Selection

Requirements:

- exactly one isolated lepton
- at least 4 Jets, $p_T(\text{jet}){>}25~\text{GeV}$, $|\eta|<2.5$
- \bullet jet vertex fraction $|\mathsf{JVF}| > 0.75$
- at least one *b*-tagged jet

muon channel:

- $p_T(\mu) > 20 \text{ GeV}$
- $|\eta(\mu)| < 2.5$
- $\not\!\!\!E_T>$ 20 GeV
- $\not\!\!E_T + m_T(W) > 60 \text{ GeV}$

electron channel • $p_T(e) > 25 \text{ GeV}$

- $|\eta(e)|<\!\!2.47$ and outside 1.37< $|\eta|<\!\!1.52$
- $m_T(W) > 30 \text{ GeV}$
- used b-tagger: MV1 (neural network), 70% efficiency, 1/134 mist-tag rate
- reconstruction with KLFitter: m_t =172.5 GeV, use b-tag weight

The Template Method

- determine W-helicity fractions F_0, F_L and F_R via template fit to $\cos \theta^*$ distribution in data
- number of entries in bin *j*:

$$N_j = \sum_{i=0,L,R} N_i^p \cdot \epsilon_i \int_{\Delta x_j} f_i(x) dx + \sum_{i=\text{bkg}} N_i^p \cdot \int_{\Delta x_j} f_i(x) dx$$

- 3 signal templates F_0, F_L, F_R and
- 3 background templates: W+jets, multijet, 'remaining background'
- maximize the likelihood:

$$\mathcal{P}\left(\vec{N}\right) = \underbrace{\prod_{i=1}^{n_b} \frac{N_i^{d_i}}{d_i!} \cdot \mathrm{e}^{-N_i}}_{\text{Poisson terms}} \cdot \underbrace{\prod_{j=1}^{n_{\mathrm{bkg}}} \frac{1}{\sqrt{2\pi}\sigma_{\mathrm{B},\mathrm{exp},j}} \exp\left(\frac{(N_{\mathrm{B},j} - N_{\mathrm{B},\mathrm{exp},j})^2}{2\sigma_{\mathrm{B},\mathrm{exp},j}^2}\right)}_{\text{Gauss constraint on background}}$$

Signal and Background Templates

Templates μ +jets channel:

Signal

Background

Signal and Background Templates

Templates e+jets channel:

Signal

Background

Ensemble Tests

- create pseudo-data sets for each systematic source
- use samples varied by systematic source 1σ up and 1σ down
- create ensembles from pseudo-data:
 - \rightarrow fluctuate bin contents with Poisson probability
- perform fit to ensembles, obtain parameter distributions:

Example systematic source: jet energy scale (JES), 2000 ensembles:

Ensemble Tests

- create pseudo-data sets for each systematic source
- ullet use samples varied by systematic source 1σ up and 1σ down
- create ensembles from pseudo-data:
 - \rightarrow fluctuate bin contents with Poisson probability
- perform fit to ensembles, obtain parameter distributions:

use means of parameter distributions:

$$F_i = \frac{\langle N_i \rangle}{\langle N_0 \rangle + \langle N_L \rangle + \langle N_R \rangle}, \quad \text{for} \quad i = 0, L, R$$

 \Rightarrow differences to nominal ensembles are taken as systematic uncertainty

Template Fit with Different Setups

Statistical uncertainties in template fit to pseudo-data, from 2000 ensembles:

ATLAS Simulation - work in progress				
Uncertainty	e - μ , 1incl b -tags	e - μ , 1excl, 2incl b -tags	$e ext{-}\mu$, 0, 1excl, 2incl $b ext{-} ext{tags}$	
fixed background				
σ_{F_0}	0.02111	0.02032	0.02019	
σ_{F_L}	0.01340	0.01295	0.01286	
σ_{F_R}	0.01009	0.00968	0.00962	
fitted background				
σ_{F_0}	0.03363	0.02226	0.02220	
σ_{F_L}	0.01784	0.01430	0.01419	
σ_{F_R}	0.01910	0.01063	0.01037	
number of				
templates:	7	9	11	

Profiling: Things to Consider

Binning of $\cos \theta^*$ distribution:

• ensure reasonably small rel. stat. uncertainty per bin:

 \hookrightarrow do not want to profile statistical fluctuations!

- modified binning: trade-off value of 5% rel. stat. uncertainty per bin for 7 bins in total
- loss of sensitivity to shape investigated: statistical uncertainty only slightly increased ($\sim 0.001 \hat{=} 5\%$)

For all systematic sources:

- identify uncertainties that contribute shape uncertainties
 relative deviation = bin entry(syst) - bin entry(nominal)
 bin entry(nominal)
- criterion for profiling: more than 20% of bins have larger rel. deviation than rel. stat. uncertainty

Modified Binning of $\cos \theta^*$ Distribution

- find trade-off for rel. stat. uncertainty that is undershoot in each bin in each template
- adjust binning such that the chosen trade-off criterion is matched by each template
- $\bullet\,$ first: take $\sim\,$ half as many bins $\rightarrow\,8$ bins with equal bin width
- limiting factor: W+jets template in e+jets channel
- idea: merge first two bins into one larger bin

Influence of Binning on Template Fit

- perform template fit to pseudo-data using different number of bins (equal bin width)
- look at statistical uncertainties of fractions F_i

- loss of sensitivity with less bins: stat. unc. increases with lower bin number
- may use binning shown on previous slide: uncertainties not dramatically increased

Stat. Uncertainty as Function of number of Bins

Compare 2 setups:

four channels: e+jets, μ +jets, 1 excl. and 2 incl. b-tags six channels: add 0 excl. b-tag control region to above

 \hookrightarrow expect better constraint on b-tag systematic

Template fit to pseudo-data (Protos SM prediction), 0 nuisance parameters, expected uncertainty (2000 ensembles):

	four channels	six channels
$\sigma(F_0)$	0.0228	0.0227
$\sigma(F_L)$	0.0146	0.0145
$\sigma(F_R)$	0.0110	0.0106

 \Rightarrow expected statistical uncertainty on helicity fractions

Currently JES components and *b*-tagging SF components implemented in profile fit (8 nuisance parameters)

Expected uncertainties on helicity fractions from 2000 ensembles:

	four channels	six channels
$\sigma(F_0)$	0.0253	0.0241
$\sigma(F_L)$	0.0152	0.0151
$\sigma(F_R)$	0.0134	0.0117

 \Rightarrow including acceptance parameters does not change uncertainties (30 nuisance parameters)

Profile fit with 8 NP to Pseudo-Data

Nuisance parameter values of profile fit including relevant *b*-tag and JES components (2000 ensembles):

⇒ nuisance parameters close to zero, uncertainties decreased below one (background parameters:

fit result/input value shown)

Status: Uncertainty Evaluation

Systematic sources that are evaluated/to be evaluated:

Source of unc.	$\sigma(F_0)$	$\sigma(F_L)$	$\sigma(F_R)$
Statistical	0.0228	0.0146	0.0110
JES (shape)		\checkmark	
JES (acc.)		\checkmark	
<i>b</i> -tag SF (shape)		\checkmark	
b-tag SF (acc.)		\checkmark	
PDF		?	
Modelling	0.0306	0.0119	0.0190
Template Stat.	0.0106	0.0065	0.0054
Jet Reco		?	
Lepton Reco		?	
ISR/FSR	0.0028	0.0024	0.0005
QCD, W +jets shape		?	
top mass		?	
$ ot\!$?	

HF: heavy flavour content of W+jets

Estimation of Total Uncertainty

Latest publication of W-helicity measurement in $t\bar{t}$ events:

- JHEP06(2012)088, $\sqrt{s} = 7$ TeV, $\mathcal{L}=1.04$ fb⁻¹
- combination of 4 measurements: ℓ +jets and dilepton channel of $t\bar{t}$, template method and asymmetry method

Conservative estimate of total uncertainty for current analysis:

- take uncertainties that are not already evaluated from JHEP06(2012)088 (only template method, ℓ +jets channel)
- add in quadrature to already evaluated uncertainties

Comparison of precision:				
	$\sigma(F_0)$	$\sigma(F_L)$	$\sigma(F_R)$	
current, conservative estimate:	0.068	0.033	0.042	
results from combination in JHEP06(2012)088:	0.07	0.04	0.05	
				_