"Physics at LHC" Seminar - MPI München, 15 July 2008

Diboson physics with the ATLAS detector

Daniela Rebuzzi

Max-Planck-Institut für Physik, München

Presented results based on the following documents

- "Diboson Physics with the ATLAS Detector" (B. Zhou), CSC Note SM6
- "Diboson Physics with the ATLAS Detector", ATL-PHYS-INT-2008, April 2008
- "QCD Corrections to Vector Boson Pair Production", N. Kauer, talk at DIS2008, UCL, London

Outline

- ATLAS sensitivity to SM diboson production (W⁺W⁻, W[±]Z, ZZ, W[±]Y and ZY), using final states containing electrons, muons and photons
 - cross section measurements uncertainties estimated for integrated luminosities from 0.1 to 30 fb⁻¹
 - significance for a 5σ discovery evaluated
- sensitivity to anomalous triple gauge boson couplings (TGC) estimated
- studies include trigger information, detector calibration and alignment corrections
- analysis done over over 30 million fully simulated and reconstructed events
- Boosted Decision Tree applied to select channels
- focus on the results of the early running of LHC

Motivation for diboson studies:

- important test of the high energy behavior of EW interactions
- vector boson self-couplings related to the non-Abelian nature of the $SU(2)_L \times U(1)_Y$ symmetry group
- important backgrounds for the main LHC discoveries

Diboson final states

- tree level Feynman diagrams for electroweak diboson production at hadron colliders
- LHC diboson production rate exceed that of Tevatron by at least a factor 100 (10 time higher cross-section and at least 10 times higher in luminosity)
- cross-sections known (for any channel) at least at NLO

Diboson mode	Conditions	$\sqrt{s} = 1.96 \text{ TeV}$	$\sqrt{s} = 14 \text{ TeV}$
		$\sigma[pb]$	$\sigma[pb]$
W^+W^- [14]	W-boson width included	12.4	111.6
$W^{\pm}Z$ [14]	Z and W on mass shell	3.7	47.8
ZZ [14]	Z's on mass shell	1.43	14.8
$W^{\pm}\gamma$ [15]	$E_T^{\gamma} > 7 \text{ GeV}, \Delta R(\ell, \gamma) > 0.7$	19.3	451
Ζγ [16]	$E_T^{\gamma} > 7 \text{ GeV}, \Delta R(\ell, \gamma) > 0.7$	4.74	219

Theoretical predictions for VB pair production

• e^+e^- , pp, $p\bar{p} \rightarrow W^+W^-$, ZZ at LO (and decays)

Brown, Mikaelian (1979); Stirling, Kleiss, S. Ellis (1985); Gunion, Kunszt (1986); Muta, Najima, Wakaizumi (1986); Berends, Kleiss, Pittau (1994) $[e^+e^- \rightarrow f_1 \overline{f_2} f_3 \overline{f_4} \text{ at LO}]$

• $pp, p\bar{p} \rightarrow W^+W^-, ZZ, W^{\pm}Z$ at NLO QCD (with leptonic decays) Ohnemus (1991); Mele, Nason, Ridolfi (1991); Ohnemus, Owens (1991); Frixione (1993); Ohnemus (1994); Dixon, Kunszt, Signer (1998,1999); Campbell, K. Ellis (1999) [$pp, p\bar{p} \rightarrow \ell \bar{\ell} \ell' \bar{\ell}'$ at NLO QCD]

• $gg \rightarrow W^+W^-$, ZZ (with leptonic decays), (1-loop)² NNLO QCD correction Dicus, Kao, Repko (1987); Glover, van der Bij (1989); Kao, Dicus (1991); Matsuura, v.d. Bij (1991); Zecher, Matsuura, v.d. Bij (1994); Dührssen, Jakobs, v.d. Bij, Marquard (2005); Binoth, Ciccolini, NK, Krämer (2005,2006)

• 2-loop-virtual–Born interference for $q\bar{q} \rightarrow W^+W^-$ (all kin. inv. $\gg M_W$) \rightarrow NNLO QCD correction

Chachamis, Czakon, Eiras (2007)

from N. Kauer's talk - DIS2008, UCL, April 2008

Triple gauge boson couplings

- triple and quartic gauge boson couplings arise in the SM due to the non-Abelian nature of the theory
 - non-zero value couplings predicted at tree level for charged sector (WWY,WWZ), absence of couplings in the neutral sector (ZZZ, ZZY and ZYY)
- any theory predicting physics beyond the SM introduces deviations in the gauge couplings at some high energy scale
 - many models predict deviation from SM at the level of 10⁻³ 10⁻⁴
- signature: enhanced diboson production cross-sections, especially at high p_T or M_T
- experimental limits on non-SMTGC can be obtained by comparing the shape of the measured p_T or mass distribution (or transverse mass for W related final states) with predictions

Charged and Neutral TGC

Charged sector (WWY, WWZ)

- Lagrangian conserving C and P separately (leads to a reduction of unknown parameters) $\mathcal{L}/g_{WWV} = ig_1^V (W^*_{\mu\nu} W^{\mu} V^{\nu} - W_{\mu\nu} W^{*\mu} V^{\nu}) + i\kappa^V W^*_{\mu} W_{\nu} V^{\mu\nu} + \frac{\lambda^V}{M_{u\nu}^2} W^*_{\rho\mu} W^{\mu}_{\nu} V^{\nu\rho}$
- SM triple gauge vertices $g_1^V = \kappa^V = 1, \ \lambda^V = 0 \ {\rm with} \ V = \gamma, Z$
- model-independent parameterization of the non-SM physics anomalous couplings

$$\Delta \mathbf{g}_{1}^{\mathbf{Z}} \equiv g_{1}^{Z} - 1, \ \Delta \kappa^{\gamma} \equiv \kappa^{\gamma} - 1, \ \Delta \kappa^{\mathbf{Z}} \equiv \kappa^{Z} - 1, \ \lambda^{\gamma}, \ \lambda^{\mathbf{Z}}$$

 with non-SM coupling parameters, amplitude for gauge boson pair production grow, eventually violating the tree-level unitarity - violation avoided by an effective cutoff scale Λ

$$\Delta \kappa(\hat{s}) = \frac{\Delta \kappa}{(1 + \hat{s}/\Lambda^2)^n}$$

n = 2 charged TGC, n = 3 neutral TGC

new physics, responsible for anomalous couplings, at a scale Λ

Neutral sector (ZZY, ZZZ -and ZYY-)

effective Lagrangian (case of on-shell Z bosons only)

$$\mathcal{L} = -\frac{e}{M_Z^2} [\mathbf{f_4}^V (\partial_\mu V^{\mu\beta}) Z_\alpha (\partial^\alpha Z_\beta) + \mathbf{f_5^V} (\partial^\sigma V_{\sigma\mu}) \frac{1}{2} \varepsilon_{\mu\nu\rho\sigma} Z^{\rho\sigma} Z_\beta]$$

SM couplings f_i^{v} (i=4,5)

are zero at tree level

• diboson cross-section measurements using up to 2 fb⁻¹ of integrated luminosity

Process	Source	${ m L}{ m fb^{-1}}$	observed events	background events	$\sigma(ext{data}) ext{[pb]} \pm ext{(stat)} \pm ext{(sys)} \pm ext{(lum)}$	σ(theory) [pb]
W ⁺ W ⁻ (ee, μμ, eμ)	CDF [20] D0 [21]	0.83 0.25	95 25	38 ± 5 8.1 \pm .5	$\begin{array}{c} 13.6{\pm}2.3{\pm}1.6\pm1.2\\ 13.8{\pm}4.1{\pm}1.1\pm0.9\end{array}$	12.4±0.8
$W^{\pm}Z \\ (\ell^{\pm}\nu\ell^{+}\ell^{-})$	CDF [22] D0 [23]	1.1 1.0	16 13	2.7±0.4 4.5±0.6	$5.0^{+1.8}_{-1.4} \pm 0.4$ 2.7 +1.7-1.3 (total)	3.7±0.3
$Z\gamma \ (\ell^+\ell^-\gamma)$	CDF [24] D0 [25]	0.2 1.0	72 968	$4.9{\pm}1.1$ 117 ${\pm}12$	$4.6 \pm 0.6 \text{ (sta+sys)} \pm 0.3$ $4.96 \pm 0.3 \text{ (sta+sys)} \pm 0.3$	4.5±0.3 4.7±0.2
$W^{\pm}\gamma \ (\ell^{\pm}\nu\gamma)$	CDF [24] D0 [26]	0.2 0.16	323 273	$114{\pm}21 \\ 132{\pm}7$	$18.1 \pm 3.1 \text{ (sta+sys)} \pm 1.2$ $14.8 \pm 1.9 \text{ (sta+sys)} \pm 1.0$	19.3±1.4 16.0±0.4
$ZZ_{(\ell^+\ell^-\ell^+\ell^-)}$	CDF [27] D0 [28]	1.9 1.0	2 1	0.014 0.13	$1.4^{+0.7}_{-0.6}\pm0.6$ < 4.4	1.5±0.2 "

all results consistent with SM predictions, based upon NLO matrix element calculations

• charged triboson vertex measurements for W⁺W⁻ γ and W⁺W⁻Z (W[±]Z and W[±] γ channels)

Coupling	Source	L (fb ⁻¹)	λ_Z	$\Delta \kappa_Z$	$\Delta \kappa_{\gamma}$	λγ
$WW\gamma$ from $W^{\pm}\gamma$	D0 [26]	0.16			[-0.88, 0.96]	[-0.2, 0.2]
WWZ from $W^{\pm}Z$ WWZ from $W^{\pm}Z$	D0 [23] CDF	1.0 1.9	[-0.17, 0.21] [-0.13, 0.14]	[-0.12, 0.29] [-0.82, 1.27]		
$WWZ = WW\gamma$ from W^+W^-	D0 [29]	0.25	[-0.31, 0.33]	[-0.36, 0.33]		
from $W^+W^-, W^\pm Z$	CDF [30]	0.35	[-0.18, 0.17]	[-0.46, 0.39]		

95% CL on the anomalous gauge couplings (Λ =2TeV)

Main backgrounds	Ммс		Gener	rator
$q\bar{q}' \rightarrow Z\gamma \rightarrow \ell^+ \ell^- \gamma$ $(\ell = e, \ \mu; \ E_T^{\gamma} > 10 \ \text{GeV})$	5280	1.0	66,000	Ρυτηία
$(\ell = e, \ \mu; \ E_T^{\gamma} > 10 \ { m GeV}$)				
$qar q' o W^- \gamma o \ell^- u \gamma$	6820	1.0	25,600	Pythia
(4 leptons (e, μ), $p_T^c > 5$ GeV, $ \eta^c < 2.7$) $q\bar{q}' \rightarrow W^+ \gamma \rightarrow \ell^+ \nu \gamma$	10220	1.0	38,400	Ρυτηία
$(\ell = e, \mu, \tau; M_{Z/\gamma^*} > 12 \text{ GeV})$				
$(\ell = e, \mu; Z \text{ on mass shell})$ $q\bar{q}' \rightarrow ZZ \rightarrow \ell^+ \ell^- \ell^+ \ell^-$	159	0.219	43,000	Ρυτηία
$q\bar{q}' \to ZZ \to \ell^+ \ell^- \nu \bar{\nu}$	397	1.0	118,000	MC@NLO
$q ar q' o Z Z o \ell^+ \ell^- \ell^+ \ell^-$	66.8	1.0	49,250	MC@NLO
$(\ell = e, \mu; Z \text{ on mass shell})$				
$q\bar{q}' \rightarrow W^- Z \rightarrow \ell^- \nu \ell^+ \ell^-$	276.4	1.0	50,000	MC@NLO
$q\bar{q}' \rightarrow W^+ Z \rightarrow \ell^+ \nu \ell^+ \ell^-$	441.7	1.0	50,000	MC@NLO
$(\ell = e, \mu, \tau)$			*	55
$gg \rightarrow W^+W^- \rightarrow \ell^+ \nu \ell^- \nu$	540.0	0.96	180,000	qq2ww
$a\bar{a}' \rightarrow W^+W^- \rightarrow \ell^+ \nu \ell^- \nu$	11718	1.0	180,000	MC@NLO

cross-section (fb)

N_{MC}

 $\varepsilon_{\text{filter}}$

Generator

gauge-boson decays into τ included (with

Data samples

- T decaying to all)
 W- boson width and spin-spin correlation included
 - 'zero-width' approximation used in W[±]Z and ZZ calculations (no Z/γ* interference)
- LO cross-sections rescaled to NLO by using K-factors from NLO ME calculation

 $tt \rightarrow | + X$

Z + X and W + X (X = jets or γ)

Process

700,000

30M

1.1 M

MC@NLO

PYTHIA

AcerMC

Generators for TGC studies

- No anomalous triple gauge boson coupling implemented in MC@NLO and PYTHIA
- BosoMC and BHO used to calculate LO and NLO cross-sections for all five diboson final states (BHO models ZZ,W⁺W⁻ and Zγ, BosoMC W[±]Z,W[±]γ)
 - parton level generators, no parton shower
- ZZ,W⁺W⁻ and W[±]Z cross sections and distributions at NLO with SM couplings compared to MC@NLO ones (using CTEQ6M pdf set) - agreement within 2%

Reweighing the fully simulated samples

- BHO and BosoMC calculations with different anomalous coupling parameters used to re-weight the fully simulated events generated with MC@NLO
 - weighing applied after passing the event selection cuts
- weights generated in one-dimensional and two-dimensional anomalous coupling space according to parton level kinematics
 - 5M events for each coupling parameter space point
 - step size ranges from 0.1×10^{-3} to 1.0×10^{-3}
- fully simulated events weighed equivalent then to fully simulated events with the corresponding anomalous couplings

TGC from WW with PDF CTEQ6M

"Physics at LHC" Seminar - MPI München, 15-07-2008

• *Physics objects*: electrons, photons, muons, missing ET, and hadronic jets

Object	Identification	η-φ Coverage	Efficiency/ Resolution
electrons	all cuts but the TRT passed additional ID isolation + E/p	$ \eta < 2.5$ (excluded region 1.35 < $ \eta < 1.57$) $E_T > 25$ GeV (or two e with $E_T > 10$ GeV)	75% barrel, 60% endcap
muons	combined tracks (STACO) isolated (E _T (cone0.45) < 5GeV)	η < 2.5, _{PT} >5 GeV	94.9% (88.3 ± 0.2)% after the isolation
hadronic jets	0.7 cone, E _T > 20 GeV	η < 3.0	-
missing ET	energy deposited in all calo cells and from the muons	-	Resolution (on W ⁺ W ⁻ events) 6.5 GeV
photons	as electrons in the EM calo but no charged track in the ID		

- trigger menus: single muon, single electron, dielectron and dimuon
 - efficiency 95-100% (with the exception of Wγ events, 80%)
 - two analysis approaches: cut based and Boosted Decision Tree (preselection cuts common to both approaches)

Boosted Decision Trees (BDT)

- advanced data analysis technique developed for MiniBooNE and BaBar
- BDT program works with a set of data including both signal and background
- data presented by a set of physics variable distributions

BDT training procedure

- a decision tree split data recursively basing on cuts on the input variables, until a stopping criterion is reached (i.e. too few events, purity, etc.)
- every event ends up in a signal or background leaf of the decision tree
 - event in the signal leaf score 1, otherwise -1
- "boosted" = misclassified events will be given a larger weight in the following tree
- procedure repeated several hundreds to thousand times until the performance reaches optimal
- discriminator: sum of weighted scores from all trees is the final score of the event (BDT output)

Boosted Decision Trees

- measure of BDT performance with statistically independent test samples
- high score for a given test event means that it is most likely a signal event, low score, a background event
- by choosing a particular value of the score on which to cut, one can select a desired fraction of the signal or a desired signal over background ratio

BDT-output spectra from MC experiments for W⁺W⁻ (left) and W[±]Z (right) MC data ("mock data") = sample of simulated events with appropriate statistics according to the luminosity and the SM

Signature	σ×BR	Trigger eff	Backgrounds	TGC
3 charged isolated leptons	442 fb for W⁺Z 276 fb for W⁻Z	98.9 ± 1.0 % (single or dilepton triggers)	$\begin{array}{l} ZZ \rightarrow 4I \text{ with one I undetected} \\ Z+X \rightarrow 2I + X \ (X = jets \text{ or photons} \\ faking leptons) \\ tt \rightarrow W^+W^-bb^- \rightarrow 3I + X \end{array}$	WWZ

- event preselection: 3 leptons (at least one with p_T > 25 GeV) and miss-E_T > 15 GeV consistent with Z dilepton decays (M_{II} = 91.18 ± 20 GeV) and W leptonic decay (10 GeV < M_T(I, miss-E_T) < 400 GeV)
 - efficiency: on W⁺Z 26% on W⁻Z 29%
- event selection:
 - miss- E_T > 25GeV and isolated tracks originating from the same collision point
 - no more than one hadronic jet with $E_T > 30$ GeV and $|\eta| < 3.0$
 - $p_T(3I) + E_T < I20$ GeV and $\sum had E_T < 200$ GeV (against tt and hadronic jet events)
 - p_T(3rd lepton) > 20 GeV (25 GeV) for muons (electrons) and ΔR(leptons) > 0.2 (against Z +X background)
 - $|M_Z M_{\mu\mu}| < 12 \text{ GeV or } |M_Z M_{ee}| < 9 \text{ GeV}$
 - 40 GeV < M_T(3rd I, miss-E_T) < 120 GeV

cut-based analysis: number of selected events at 1 fb⁻¹ of integrated luminosity

	WZ	ZZ	tī	Z + jet	$Z + \gamma$	Drell-Yan	Total bkg	N_{WZ}/N_B
N events	53	2.7	.023	1.9	0.18	2.5	7.3	7.3
% of background	-	37	.32	26	2.5	35	-	-

- for 100 pb⁻¹ only 5 signal events and 0.7 background events expected \rightarrow significance (= Poisson probability with mean N_B to observe \geq N_S + N_B events) only 3.6 σ
- improvement through BDT analysis
 - 1000 trees with 20 tree-split nodes
 - 22 kinematics and topology variables
 - 50% of signal and background events for the training (total: 12k signal 18k background)

BDT analysis (BDT cut > 200): number of selected events at 1 fb ⁻¹ of integrated luminosity
--

	WZ	ZZ	tī	Z + jet	$Z + \gamma$	Other	Total bkg	N_{WZ}/N_B
N events	128	7.7	2.8	2.5	2.0	1.1	16	7.9
% of background		48	17	16	12	7.0	-	-

 for 100 pb⁻¹12.8 signal events and 1.6 background events expected → significance (including both statistics and 20% systematic uncertainties) = 5.9 σ

$W^{\pm}\gamma \rightarrow I^{\pm}\nu \gamma$ selection

Signature	σ[pb]	Trigger eff	Backgrounds	TGC
one high-p _T e or μ (in absence of the OSSF one), one high-p _T photon and miss-E _T	19.26 for $W^+\gamma$ 8.15 for $W^-\gamma$ from BHO NLO and $E_T^{\gamma} > 10$ GeV	~80% (μ20, e22i, γ55)	inclusive W+X \rightarrow I $\gamma \nu$ +X with γ from FSR inclusive W+X \rightarrow I ν +X with X = jet faking a γ inclusive Z + X \rightarrow II + X with one I undetected and X = γ or jet faking a γ	WWγ

- preselection: one isolated lepton and one isolated photon with $p_T^{I,\gamma} > 10$ GeV
- most energetic photon of the event selected

W[±](μ[±]ν) events variables, from signal (ISR) and backgrounds (FSR, fake γ and inclusive Z contamination)

"Physics at LHC" Seminar - MPI München, 15-07-2008

$W^{\pm}\gamma \rightarrow I^{\pm}\nu \gamma$ selection

BDT method to select $W^{\pm}\gamma$ events

- three separate trainings:
 - I. If ν events with FSR photons from other sources
 - 2. $W^{\pm}\gamma$ signal photons from fake photons
 - 3. signal photons from contamination of Z inclusive events
- I9 variables used
- $W^{\pm}\gamma$ selection efficiency 65% with S/B = 0.95 (0.98) for electron (muon) final states

		Signal		Backg	round	
		$W^{\pm}\gamma$	W+FSR_ γ	W+fake_ γ	$Z(\ell \not l) \gamma$	Total
$\ell = e$	Pre-selected	1710	11440	7890	32480	
	BDT selection	1145	242	791	101	
	Triggered	966	188	628	93	
	NLO scaled	1604 (k=1.66)				1183 (k=1.3)
$\ell = \mu$	Pre-selected	2680	28410	10250	3950	
	BDT selection	1793	413	961	409	
	Triggered	1305	177	595	260	
	NLO scaled	2166 (k=1.66)				1342 (k=1.3)

BDT effective against FSR and fake photons

number of events after several cuts for

fb⁻¹ of integrated luminosity

W⁺W⁻ \rightarrow I⁺V I⁻V selection

Signature	σ×BR	Trigger eff	Backgrounds	TGC
two high-p⊤ e or µ OSSF one) with high miss-E⊤	1302 ± 65 fb (qq) 60 ± 3 fb (gg)	98.2% (ee), 95.9% (μμ) and 97.4% (eμ) dilepton e25i or μ20 or 2e10 or 2μ6	tt, inclusive Z and W and Drell-Yan with mis-measured miss-E⊤	WWZ, WWY

- preselection: two high-pT leptons ($p_T > 10$ GeV) and miss- $E_T > 15$ GeV
- event selection: conventional cuts or BDT selection cuts
 - two isolated leptons with OS and p_T > 20 GeV and $|\eta|$ < 2.5
 - jet veto for any jet with $p_T > 20$ GeV in $|\eta| < 3$ (against tt)
 - miss-ET < 50 GeV (against pileup and Z/ γ^* in DY)
 - Z mass veto (against inclusive Z background)
 - angular variable cuts: $\phi_{\parallel} < 2$ rad (high signal detection eff) or $\phi(p_{T}^{\parallel}, p_{T}^{miss}) > 175$ deg (for TGC studies)

$W^+W^- \rightarrow I^+ \vee I^- \vee selection$

WW overall signal detection efficiency 1.4-3% - for 100 pb⁻¹ significance 4.7 σ (φ₁ < 2 rad cut)

improvement through BDT analysis

- 1000 decision trees with 20 tree-split nodes
- 22 kinematics and topology variables
- input data for BDT analysis after the pre-selection cuts
- 50% preselected simulated events for the training, 50% to test event selection performance

WW \rightarrow leptons detection sensitivities of accepted signal and background events for 1 fb⁻¹ BDT selection efficiencies including the trigger requirements based on pre-selected events

		Background fraction							
Modes	$\varepsilon_{WW}(\%)$	N_{WW}	N_{bkg}	tī	$W^{\pm}Z$	Z + X	N_{WW}/N_{bkg}		
evμv	32.7	347 ± 3	64 ± 5	47.7%	27.8%	21.8%	5.4		
μνμν	12.1	70 ± 2	17 ± 2	54.1%	34.6%	11.3%	4.1		
evev	13.7	52 ± 1	11 ± 1	81.4%	7.2%	11.4%	4.7		

- for measurements with 100 pb⁻¹, application of BDT is compelling (47 signal events against 10 events using cut-based analysis)
- BDT significance = $IO \sigma$ (including 20% systematic uncertainties background events 9.2)

$Z\gamma \rightarrow I^+I^-\gamma$ selection

Signature	σ[pb]	Trigger eff	Backgrounds	TGC
two high-p⊤ e or μ +	5.44	single or dilepton trigger	Z + FSR γ (from leptons from Z	ZZZ,
isolated high-pT photon	from BHO NLO	~98% (~90%) for	decay), Z + fake γ from jets, W +	ZZY
(from ISR)	and E _T ^γ > 10 GeV	electrons (muons)	X reconstructed as IIγ	(ZYY)

• preselection: two leptons and one photon with $E_T^{\gamma} > 10$ GeV

- event selection: BDT analysis
 - two stages:
 - I. identify FRS photon background
 - 2. distinguish signal from Z events with fake $\boldsymbol{\gamma}$
 - separate training for electron and muon Z decay with 19 variables in total
 - input data for BDT analysis after the pre-selection cuts

		Signal			Background				
		$Z\gamma$	Z+FSR_ γ	Z+fake_ γ	$W(lv)\gamma$	Total			
$\ell = e$	Pre-selected	430	2760	490	44				
	BDT selection	288	70	74	0				
	Triggered	282	65	79	0				
	NLO scaled	367 (k=1.3)				187 (k=1.3)			
$\ell = \mu$	Pre-selected	950	7500	790	930				
	BDT selection	636	173	186	0				
	Triggered	578	164	165	0				
	NLO scaled	751 (k=1.3)				429 (k=1.3)			

number of $Z\gamma$ signal and background events after pre-selection, BDT and trigger selections for 1 fb⁻¹

signal efficiency 67% S/B = 2.0 (1.8) for electron (muon) Z decay

forbidden in the SM!

$ZZ \rightarrow |+| - |+| - selection$

Signature	σ	Trigger eff	Backgrounds	TGC
four high-pT isolated leptons	σ×BR =159 fb (PYTHIA) 17.75 pb (MC@NLO, pure on-shell ZZ)	single or dilepton trigger ~100%	tt → WWbb → 4l + X Zbb →4l + X	ZZZ, ZZY (ZYY)

- $I = e \mu \text{ or } \tau \tau \text{ contribution to the four lepton channels less than 4%}$
- PYTHIA cross section including four leptons BR and filter rescaled with k = 1.35
- preselection: electrons $p_T > 5$ GeV and $|\eta| < 2.5, 0.5 < E/P < 3.0$ muons $p_T > 5$ GeV and $|\eta| < 2.7 + \chi^2 < 15$ (match between MS and ID tracks and track fit)
- event selection:
 - isolation $(E_{0.2}/E_T^{\mu} < 0.2)$
 - lepton separation $\Delta R(I^+I^-) > 0.2$
 - loose Z mass cut: one lepton with $p_T > 20$ GeV + one lepton pair with $70 < M_{II} < 110$ GeV
 - tight Z mass cut: both lepton pairs with $70 < M_{\parallel} < 110$ GeV

	4µ [%]		4µ [%] 4e [%]		2e2µ [%]	
	tight	loose	tight	loose	tight	loose
Signal	41.4 ± 0.6	52.4 ± 0.7	24.4 ± 0.5	30.0 ± 0.6	28.1 ± 0.4	34.3 ± 0.4
Zbb	0.13 ± 0.06		0.61 ± 0.14		0.51 ± 0.13	
tt	0.07 ± 0.07		0.07 ± 0.07		0.07 ± 0.07	

$ZZ \rightarrow |^+|^- |^+|^-$ selection

 ATLAS significance to the ZZ → 4I signal for I fb⁻¹ (20% systematic uncertainties) = 6.8 σ (loose Z mass cut and BDT selections)

$ZZ \rightarrow I^+I^- \nu\nu$ selection

Signature	σ×BR	Trigger eff	Backgrounds	TGC
two high-p⊤ charged leptons + large miss-E⊤	300 fb (PYTHIA rescaled)	efficiency ~ 97% e22i or μ20	tt, Z→ II Drell-Yan with not reconstructed jets, W±Z,W+W⁻, ZZ	ZZZ, ZZY (ZYY)

- preselection: two high-pT leptons and miss-ET
- event selection (each cut effective mostly against a given background):
 - two OS good quality leptons with $p_T > 20$ GeV and $|\eta| < 2.5$ (against tt and $Z \rightarrow \tau \tau$)
 - $|M_{\parallel} 91.2 \text{ GeV}| < 10 \text{ GeV}$ (against background with leptons not from Z)
 - hadronic jet veto (events with $p_{Tjet} > 30$ GeV and $|\eta_{jet}| < 3.0$) (against tt, t \rightarrow Wb)
 - third-lepton veto and angular matching $\phi_{\text{miss-ET}}$ ϕ_Z (against W[±]Z)
 - miss-E_T > 50 GeV (against ZZ Drell-Yan + jets)
 - pT(Z) > 100 GeV (against single Z channel)

$ZZ \rightarrow I^+I^- \nu\nu$ selection

Cut	$ZZ \to \ell\ell\nu\nu$	$ZZ \rightarrow 4l$	$Z \rightarrow l l$	tī	$W^{\pm}Z$	W^+W^-	Z ightarrow au au
Leptons	130.1	54.3	13100	4530	271.2	491.1	2170
Third-lepton veto	101.9	3.1	1900	428.9	52.9	375.6	1690
	(78.3%)	(5.7%)	(14.5%)	(9.5%)	(19.5%)	(76.5%)	(77.9%)
Dilepton mass	100.2	2.7	1740	110.2	45.3	83.8	40.1
	(98.3%)	(87.1%)	(91.6%)	(25.7%)	(85.6%)	(22.3%)	(3.4%)
Missing E_T	38.0	0.34	3.8	17.9	9.4	18.3	0
	(39.9%)	(12.6%)	(0.2%)	(16.2%)	(20.8%)	(21.8%)	(0.0%)
Jet veto	34.4	0.30	0.44	6.0	7.6	16.7	0
	(90.5%)	(88.2%)	(11.6%)	(33.5%)	(80.9%)	(91.3%)	(0.0%)
p_T^Z	10.2	0.08	0.4	3.0	1.7	0.02	0
-	(29.7%)	(26.7%)	(90.9%)	(50.0%)	(22.4%)	(0.1%)	(0.0%)
Stat. Error [90%CL]	0.2	0.01	0.2	2.1	0.1	0.22	[1.6]

• expected signal yields to $ZZ \rightarrow 2I2\nu$ for I fb⁻¹ (error statistical only)

N _{signal}	Signal efficiency	N _{background}	N_S/N_B
10.2 ± 0.2	2.6%	5.2 ± 2.6	2.0 ± 0.8

Cross section measurements

- binned likelihood method used to determine the most likely cross sections and to extract sensitivities to the anomalous TGCs
- expected events determined from high statistics MC simulation observed events include statistical fluctuation according to the luminosity
- events binned by one or more observable for each bin expected signal and background events compared to the observed number of events (n in each bin) with a likelihood
- likelihood based on a Poisson statistics convoluted with Gaussian probabilities to model signal and background uncertainties

$$L = \int_{1-3\sigma_b}^{1+3\sigma_b} \int_{1-3\sigma_s}^{1+3\sigma_s} g_s g_b \frac{(f_s \nu_s + f_b \nu_b)^n e^{-(f_s \nu_s + f_b \nu_b)}}{n!} df_s df_b, \ g_i = \frac{e^{(1-f_i)^2} / \sigma_i^2}{\int_0^\infty e^{(1-f_i)^2} / \sigma_i^2 df_i} (i=s,b)$$

- a total log-likelihood is formed from all the bin likelihood
- statistic test used $-2 \ln L = -2 \sum_{k=channels} \sum_{i=bins} \log(L_i^k)$
- the minimum of the negative log-likelihood determines the most likely cross-section (or anomalous TGC)
 - 68% CL ($\pm 1\sigma$) = minimum ± 1.0
 - 95% CL = minimum ± 1.92 (one parameter) minimum ± 2.99 (two parameters)

Systematic uncertainties

- theoretical uncertainties: PDF errors and QCD scales
 - from 3.4% to 6.2%
- experimental uncertainties:
 - Iuminosity determination: using Z and W production (leptonic decays) this can be controlled to 5%
 - lepton identification efficiencies: lepton acceptance uncertainty about 2-3% lepton trigger
 - energy/momentum resolution: 3% uncertainty
 - jet energy scale and resolution: 10% uncertainty
 - background model and estimate: uncertainties of 15-20% for all channels but ZZ→41 (less than 2%)
 - Tevatron reaches 10% with 1 fb⁻¹, ATLAS should reach the same results with 100 pb⁻¹

Study done on W[±]Z: a 3.4-6.7% background contribution uncertainty would produce additional cross-section measurement errors of 2-3%

Signal significances and stat uncertainties

 all diboson final states - 1 fb-1 - 20% systematic uncertainties of the background estimation probability of the background fluctuating w.r.t the expected total observation, assuming 20% systematic uncertainties

Diboson mode	Signal	Background	Signal eff.	$\sigma_{\scriptscriptstyle stat}^{\scriptscriptstyle signal}$	<i>p</i> -value	Sig.	100 pb ⁻
$W^+W^- ightarrow e^{\pm} u \mu^{\mp} u$	347±3	64±5	12.6% (BDT)	5.4%	$3.6 imes10^{-166}$	27.4	
$W^+W^- ightarrow \mu^+ u \mu^- u$	$70{\pm}1$	17 ± 2	5.2% (BDT)	12.0%	$8.8 imes10^{-30}$	11.3	99σ
$W^+W^- \rightarrow e^+ v e^- v$	52 ± 1	$11{\pm}2$	4.9% (BDT)	13.9%	$1.9 imes10^{-24}$	10.1	/./ 0
$W^+W^- ightarrow \ell^+ u \ell^- u$	103 ± 3	17 ± 2	2.0% (cuts)	9.9%	$1.4 imes10^{-54}$	15.5	
$W^{\pm}Z \rightarrow \ell^{\pm} \nu \ell^{+} \ell^{-}$	$\begin{array}{c}128\pm2\\53\pm2\end{array}$	$\begin{array}{c} 16\pm3\\ 8\pm1 \end{array}$	15.2% (BDT) 6.3% (cuts)	8.8% 13.7%	$\begin{array}{c} 3.0 \times 10^{-76} \\ 3.1 \times 10^{-30} \end{array}$	18.4 11.4	5.9 σ
$ZZ \rightarrow 4\ell$	17 ± 0.5	2 ± 0.2	7.7% (cuts)	24.6%	$6.0 imes10^{-12}$	6.8	
$ZZ \rightarrow \ell^+ \ell^- \nu \bar{\nu}$	$10\pm\!0.2$	5 ± 2	2.6% (cuts)	31.3%	$7.7 imes10^{-4}$	3.2	
$W\gamma ightarrow e u \gamma$	1604 ± 65	1180 ± 120	5.7% (BDT)	2.5%	significance	> 30	> 10 ~
$W\gamma ightarrow \mu u \gamma$	2166 ± 88	1340 ± 130	7.6% (BDT)	2.1%	significance	> 30	>10.0
$Z\gamma ightarrow e^+e^-\gamma$	367 ± 12	187 ± 19	5.4% (BDT)	5.2%	$1.2 imes 10^{-91}$	20.3	× 10 -
$Z\gamma ightarrow \mu^+\mu^-\gamma$	751 ± 23	429 ± 43	11% (BDT)	3.6%	5.9×10^{-171}	27.8	>ιυ σ

• for 100 pb⁻¹, statistical uncertainties are large but still good significance

• signal detection significances listed right to the table (including 20% systematic error)

Measurements errors

- cross-section measurement errors estimated for various event selection cuts and integrated luminosities in the W⁺W⁻ and W[±]Z BDT based analysis
 - cuts on the BDT spectra varied and cross section measurements repeated
 - a total 9.2% systematic uncertainties included in the fitting process

Sensitivity to anomalous couplings

- signature: increase in the cross-section at high values of gauge boson p_T and M_T
- procedure: comparing the "measured" cross section or pT/MT distributions to models with anomalous TGCs
- binned likelihood fitting procedure, using MT or pT spectrum for each channel, used to extract the 95% CL intervals of anomalous coupling parameters
 - one- and two-dimensional limits set on charged CP conserving coupling parameters from WW,WZ and Wγ final states
 - ZZ final state used to probe the neutral anomalous TGC sensitivity
- Λ form factor scale chosen so that the TGC limit is less than the unitarity limit (Λ = 2-3 TeV in the CSC analysis)

"Physics at LHC" Seminar - MPI München, 15-07-2008

Sensitivity to anomalous couplings

• 95% CL interval on the anomalous TGC couplings in the effective Lagrangian for 10 fb⁻¹ and $\Lambda = 2 \text{ TeV}$ (in brackets variables used in the fit to set the sensitivity interval)

Diboson, (fit spectra)	λ_Z	$\Delta \kappa_Z$	Δg_1^Z	$\Delta \kappa_{\gamma}$	λγ
WZ, (M_T) $W\gamma$, (p_T^{γ})	[-0.015, 0.013]	[-0.095, 0.222]	[-0.011, 0.034]	[-0.26, 0.07]	[-0.05, 0.02]
WW, (M_T)	[-0.040, 0.038]	[-0.035, 0.073]	[-0.149, 0.309]	[-0.088, 0.089]	[-0.074, 0.165]
WZ, (D0) (1.0 fb ⁻¹) $W^{\pm}\gamma$ (D0),	[-0.17, 0.21]	[-0.12, 0.29]	$(\Delta g_1^Z = \Delta \kappa_Z)$		
(0.16 fb ⁻¹) WW, (LEP)	-		[-0.051,0.034]	[-0.88,0.96] [-0.105,0.069]	[-0.2,0.2] [-0.059,0.026]
$(\lambda_{\gamma} = \lambda_Z, \Delta \kappa_Z)$	$z = \Delta g_1^Z - \Delta \kappa_\gamma \tan^2 \theta$	θ_W)			

	f_4^Z	f_5^Z	f_4^γ	f_5^{γ}
$ZZ \to \ell\ell\ell\ell$	[-0.010, 0.010]	[-0.010, 0.010]	[-0.012, 0.012]	[-0.013, 0.012]
$ZZ \rightarrow \ell\ell \nu \nu$	[-0.012, 0.012]	[-0.012, 0.012]	[-0.014, 0.014]	[-0.015, 0.014]
Combined	[-0.009, 0.009]	[-0.009, 0.009]	[-0.010, 0.010]	[-0.011, 0.010]
LEP Limit	[-0.30, 0.30]	[-0.34, 0.38]	[-0.17, 0.19]	[-0.32, 0.36]

Charged sector

Neutral sector

- CSC studies performed on large data samples and using advanced analysis technicques
 - BDT improves sensitivities significantly
- focus on the results achievable in the early running of LHC
- with 100 pb⁻¹ of integrated luminosity, the SM signals of W⁺W⁻, W[±]Z and W[±]γ can be established with significance better than 5σ assuming 20% of systematic uncertainties
- ZZ production can be established with 1 fb^{-1} of data using the four-lepton decay channels
 - only ZZ pairs used so far, study on Zγ in progress
- systematic uncertainties dominated the cross-section measurement errors starting from 5-30 fb⁻¹ of data
- anomalous TGC sensitivities can be significantly improved, starting from 100 pb⁻¹ of data, over the results from Tevatron

Backup Slides

ATLAS @ LHC

ATLAS Detector

TRACKER (ID)

Si pixels + strips TRT \rightarrow particle identification $\sigma/p_T = 5 \times 10^{-4} p_T \oplus 0.01$ $|\eta| < 2.5$

EM CALO

Pb-liquid argon - uniform longitudinal segmentation $\sigma/E = 10\%/\sqrt{E \oplus 0.07}$ $|\eta| < 3.2$

HAD CALO

Fe-scint. + Cu-liquid argon (\geq 10 λ) $\sigma/E = 50\%/\sqrt{E} \oplus 0.03 |\eta| < 3.2$ $\sigma/E = 100\%/\sqrt{E} \oplus 0.1 3.1 < |\eta| < 4.9$

MUON SYSTEM

MDT, CSC, RPC, TGC $\sigma/p_T = 10\%/p_T$ at $p_T = 1$ TeV/c $|\eta| < 2.7$

Cross Sections for dibosons \rightarrow 41

Process	Generator	σ·BR [fb]	Corrections	FA	Events (K)
qq→ZZ→4I	PYTHIA6.3	158.8	+47.64	[41] 0.219	100
qq→WZ	HERWIG/Jimmy	26500		[31] 0.0143	70

qq →ZZ ^(*)	Mzz [GeV/c ²]	K factor
$\sigma_{\text{eff}} = \sigma_{\text{LO}} \cdot [\text{BR}(Z \rightarrow \text{ee}, \mu\mu, \tau\tau)]^2 \cdot \text{EF} \cdot (\text{K} + 0.3) = 34.82 \cdot [\text{K}(M_{ZZ}) + 0.3] \text{ fb}$	[115, 125]	1.15
	[125, 135]	1.21
	[135, 145]	1.25
	[155, 165]	1.34
	[175, 185]	1.31
qq → WZ $σ_{eff} = σ_{NLO}(W^+Z + W^-Z) + EF = 807 \text{ fb}$	[195, 205]	1.32
	[295, 305]	I.40
	[395, 405]	1.52
	[495, 505]	I.84
	[595, 605]	1.81

