Measurement of muon misidentification rates in $Z \to \mu \mu$ events for the ATLAS detector

Johannes Mellenthin

IMPRS Young Scientists' Workshop, Ringberg 2013

23.07.2013

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Johannes Mellenthin (Ringberg 2013)

Muon misidentification rates

23.07.2013 1 / 21

- 2 Description of the measurement methods
- Discussion of results
- Distance of the second second

- Multipurpose detector at the LHC at CERN (Geneva)
- Record proton proton collisions at \sqrt{s} = 7 TeV (2011) and 8 TeV (2012)
- After 2015 up to 13 TeV
- High instantaneous luminosity 7 · 10³³ cm⁻² s⁻¹, after upgrade 1 · 10³⁴ cm⁻² s⁻¹
- 3 main components
 - inner detector
 - calorimeters
 - muon spectrometer

Johannes Mellenthin (Ringberg 2013)

Muon reconstruction with ATLAS

- Use of all subdetectors
- Inner detector: tracking & momentum measurement with a solenoid magnetic field
- Calorimeter: isolation and energy loss
- Muon spectrometer: tracking & momentum measurement with a toroidal magnetic field & muon identification
- Performance goal: Momentum measurement with a 10 % accuracy for 1 TeV Muons

Ideal case: combination of two tracks in the inner detector and the muon spectrometer

Combined muons

- 95 % of all cases
- Highest resolution and purity
- All subdetectors need to be instrumented and operational
- Acceptance loss in uninstrumented regions of the muon spectrometer

Recover efficiency in incompletely instrumented regions through additional algorithms

- → Combination of inner detector track with spectrometer hits that don't form an independent track (segment tagged muons)
- → Muon spectrometer track with no associated inner detector track (standalone muon)
- $\rightarrow\,$ Combination of inner detector track with minimum energy deposit in the calorimeter (calorimeter muon)

Efficiency gained at the price of reduced purity

Efficiency of combination of combined and segment-tagged muons

Muon background in physics analysis

Real muons out of heavy flavour decays

- $\rightarrow\,$ b-lifetime: Muon displaced from primary vertex
- \rightarrow Surrounding jet activity in the calorimeter
- Real muons out of pion / kaon decays
 - $\rightarrow~$ Characteristic kink in the track at pion / kaon decay point
- Fake muons from jets (punch-through)
 - $\rightarrow\,$ Recognizable through large energy deposit in the calorimeter
- Cosmic muons
 - \rightarrow Tracks do not emerge from primary vertex

- High muon efficiency required for 4μ final state
 - → Combine all previously mentioned reconstruction methods to obtain maximum efficiency
- Main background ZZ diboson production
 - ightarrow Low below $m_{4\mu} \sim$ 180 GeV
- But: Processes with non-prompt muons become important
 - $\rightarrow t\bar{t}$ and Z + jets
- → Understanding of these muons important for measuring the new Higgs properties

Analysis strategy

- Goal: Study appearance of non-prompt muon background
- \rightarrow Validate the prediction of the detector simulation
- Observe background-like muons in a well controlled environment

- Use $Z \rightarrow \mu\mu$ decays
 - well known physics process
 - \rightarrow Know that any additional muons must be non-prompt
 - High statistics at LHC
 - Easy to select with high purity
 - Comparable environment to Higgs search

• Selection of $Z \rightarrow \mu\mu$ samples

- Require presence of two reconstructed combined muons
 - from the primary vertex
 - no surrounding jet activity
- Require opposite muon charges
- Require invariant dimuon mass within 10 GeV of the Z mass

- **1** Selection of $Z \rightarrow \mu\mu$ samples
- Collect background candidates
 - In selected events look for presence of objects that could give rise to non-prompt muons
 - For the contribution of pion / kaon decays use inner detector tracks
 - any track with transverse momentum above 10 GeV
 - For the contribution of secondary muons from heavy flavor decays and punch-through use jets
 - any reconstructed jets above 20 GeV
 - Use all events that have at least one such candidate for further study

- Selection of $Z \rightarrow \mu\mu$ samples
- Collect background candidates
- Look for reconstructed muons matching the background candidates
 - Exclude muons from the $Z
 ightarrow \mu \mu$ candidates
 - Study fraction as function of several observables
 - transverse momentum, pseudorapidity
 - Activity surrounding the muon
 - Muon impact parameter
 - Processes with additional prompt muons: estimate using MC simulation
 - Plot the fake rates as the fraction of background candidates with a matching muon

- Order of magnitude below 1 % in both cases
- Excellent agreement between simulation and data
- Jets: increase with *p_T* (probability of emitting a muon with sufficient momentum or punch-through)
- Tracks: Maximum at 40 GeV decrease to lower and higher momentum

Calorimeter tagged Fake rates

- Fake rates for tracks much higher
- Jets: similar to combined muons up to 40 GeV, then decrease due to reconstruction level requirements
 - ightarrow High energy deposit in calorimeter prevents identification as calorimeter muon
- Simulation underestimates the fake rates for jets
- Tracks: increase with p_T

Muon isolation

- Require low activity in an angular cone around the muon
- Prompt muons: no surrounding activity, high efficiency
- Non-prompt muons: often part of jets, high rejection

- Jets: very strong reduction (Factor 10 100)
 - Jet includes extra activity by definition
- Tracks: Strong reduction (Factor 2 10)
- Tracks: increase with p_T
 - Some tracks may not be part of jets
 - High p_T contamination by prompt muons ($WZ \rightarrow 3\mu \nu$)

- Reduction not as strong as for combined muons
 - All calorimeter muons have to pass a loose isolation cut at reconstruction
 - \rightarrow Further reduction not as strong
- Still noticeable reduction (Jets: Factor 5 100, Tracks Factor 2)

Interpretation of the observed fake rates

- Decompose into detector effects and physics effects
- Work currently in progress

Fake rates as a function of pseudorapidity

- Background from non-prompt muons need to be well understood in physics analysis
 - Example Higgs properties
- Appearance of non-prompt muons was studied in $Z \rightarrow \mu\mu$ events
- Behavior of non-prompt muons well described by simulation
 - Excellent agreement for combined and segment-tagged muons
 - Fair agreement for calorimeter tagged muons
- Isolation cuts provide strong suppression of non-prompt background
 - Behavior well predicted by simulation

Future plans:

- Use this method to optimize muon selection recommendations for ATLAS physics analysis
- Interpret the observed behavior of non-prompt muons in the scope of physics and detector effects

Backup

Combined and segment tagged Fake rates

Fake rates as a function of pseudorapidity

Backup

Calorimeter tagged Fake rates Fake rates as a function of pseudorapidity

Effect of Isolation on Combined and segment-tagged muons Fake rates as a function of pseudorapidity

