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The ATLAS detector

Multipurpose detector at the LHC at CERN (Geneva)
Record proton proton collisions at

√
s = 7 TeV (2011) and 8 TeV (2012)

After 2015 up to 13 TeV
High instantaneous luminosity 7 · 1033 cm−2 s−1, after upgrade 1 · 1034 cm−2 s−1

3 main components
inner detector
calorimeters
muon spectrometer

Solenoid magnet Transition radiation tracker

Pixel detector
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forward calorimeters
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Tile calorimeters

Calorimeters

Inner tracking detector

Semiconductor tracker

Muon chambers

Toroid magnets
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p

|η| < 2.7 
acceptance gap in |η|<0.1 |η| < 2.5
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Muon reconstruction with ATLAS

Use of all subdetectors

Inner detector: tracking & momentum measurement with a solenoid magnetic field

Calorimeter: isolation and energy loss

Muon spectrometer: tracking & momentum measurement with a toroidal magnetic
field & muon identification

Performance goal: Momentum measurement with a 10 % accuracy for 1 TeV
Muons
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Muon reconstruction

Ideal case: combination of two tracks in the inner detector and the muon spectrometer

Combined muons
95 % of all cases

Highest resolution and purity

All subdetectors need to be
instrumented and operational

Acceptance loss in
uninstrumented regions of the
muon spectrometer

ID track

MS track
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ID track no ID track (|η| > 2.5)

MS track

standalone muon

calorimeter muon
minimum deposit
in all calo layers
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Muon reconstruction

Recover efficiency in incompletely instrumented regions through additional algorithms

→ Combination of inner detector track with spectrometer hits that don’t form an
independent track (segment tagged muons)

→ Muon spectrometer track with no associated inner detector track (standalone
muon)

→ Combination of inner detector track with minimum energy deposit in the
calorimeter (calorimeter muon)

Efficiency gained at the price of reduced purity
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Muon reconstruction

Efficiency of combination of combined and segment-tagged muons
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Muon background in physics analysis

Real muons out of heavy flavour decays
→ b-lifetime: Muon displaced from primary

vertex
→ Surrounding jet activity in the calorimeter

Real muons out of pion / kaon decays
→ Characteristic kink in the track at pion /

kaon decay point
Fake muons from jets (punch-through)
→ Recognizable through large energy deposit

in the calorimeter
Cosmic muons
→ Tracks do not emerge from primary vertex
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Example: H → ZZ ∗ → 4µ

High muon efficiency required for 4µ final
state
→ Combine all previously mentioned

reconstruction methods to obtain maximum
efficiency

Main background ZZ diboson production
→ Low below m4µ ∼ 180 GeV

But: Processes with non-prompt muons
become important
→ t t̄ and Z + jets

→ Understanding of these muons important
for measuring the new Higgs properties
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Analysis strategy

Goal: Study appearance of non-prompt muon background
→ Validate the prediction of the detector simulation

Observe background-like muons in a well controlled environment

Use Z → µµ decays
well known physics process

→ Know that any additional muons must be non-prompt
High statistics at LHC
Easy to select with high purity
Comparable environment to Higgs search
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Analysis strategy

1 Selection of Z → µµ samples
Require presence of two reconstructed
combined muons

from the primary vertex
no surrounding jet activity

Require opposite muon charges
Require invariant dimuon mass within 10
GeV of the Z mass [GeV]llM
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Analysis strategy

1 Selection of Z → µµ samples
2 Collect background candidates

In selected events look for presence of objects that could give rise to non-prompt muons
For the contribution of pion / kaon decays use inner detector tracks

any track with transverse momentum above 10 GeV
For the contribution of secondary muons from heavy flavor decays and punch-through
use jets

any reconstructed jets above 20 GeV

Use all events that have at least one such candidate for further study
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Analysis strategy

1 Selection of Z → µµ samples
2 Collect background candidates
3 Look for reconstructed muons matching the background candidates

Exclude muons from the Z → µµ candidates
Study fraction as function of several observables

transverse momentum, pseudorapidity
Activity surrounding the muon
Muon impact parameter

Processes with additional prompt muons: estimate using MC simulation
Plot the fake rates as the fraction of background candidates with a matching muon
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Combined and segment tagged Fake rates

Fake rates as a function of transverse momentum

Order of magnitude below 1 % in both cases

Excellent agreement between simulation and data

Jets: increase with pT (probability of emitting a muon with sufficient momentum or
punch-through)

Tracks: Maximum at 40 GeV decrease to lower and higher momentum
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Calorimeter tagged Fake rates

Fake rates as a function of transverse momentum

Fake rates for tracks much higher
Jets: similar to combined muons up to 40 GeV, then decrease due to
reconstruction level requirements
→ High energy deposit in calorimeter prevents identification as calorimeter muon

Simulation underestimates the fake rates for jets

Tracks: increase with pT
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Possible reduction of Fake rates

Muon isolation

Require low activity in an angular cone around the muon

Prompt muons: no surrounding activity, high efficiency

Non-prompt muons: often part of jets, high rejection
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Effect of Isolation on Combined and segment-tagged muons

Fake rates as a function of transverse momentum
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Jets: very strong reduction (Factor 10 - 100)
Jet includes extra activity by definition

Tracks: Strong reduction (Factor 2 - 10)
Tracks: increase with pT

Some tracks may not be part of jets
High pT contamination by prompt muons (WZ → 3µ ν)
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Effect of Isolation on Calorimeter tagged muons

Fake rates as a function of transverse momentum
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Reduction not as strong as for combined muons
All calorimeter muons have to pass a loose isolation cut at reconstruction

→ Further reduction not as strong

Still noticeable reduction (Jets: Factor 5 - 100, Tracks Factor 2)
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Interpretation of the observed fake rates

Decompose into detector effects and physics effects
Work currently in progress

Fake rates as a function of pseudorapidity
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Conclusions & Outlook

Background from non-prompt muons need to be well understood in physics
analysis

Example Higgs properties

Appearance of non-prompt muons was studied in Z → µµ events
Behavior of non-prompt muons well described by simulation

Excellent agreement for combined and segment-tagged muons
Fair agreement for calorimeter tagged muons

Isolation cuts provide strong suppression of non-prompt background
Behavior well predicted by simulation

Future plans:

Use this method to optimize muon selection recommendations for ATLAS physics
analysis

Interpret the observed behavior of non-prompt muons in the scope of physics and
detector effects
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Backup

Combined and segment tagged Fake rates
Fake rates as a function of pseudorapidity
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Backup

Calorimeter tagged Fake rates
Fake rates as a function of pseudorapidity
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Backup

Effect of Isolation on Combined and segment-tagged muons
Fake rates as a function of pseudorapidity
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