Automated NLO calculations for top quark observables at hadron colliders

Johannes Schlenk

Max Planck Institute for Physics

IMPRS Young Scientist Workshop at Ringberg Castle

July 23, 2013

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Overview

- 1. QCD processes at hadron colliders
- 2. Calculation of virtual corrections
- 3. GoSam and Sherpa
- 4. The process $pp
 ightarrow W^+ W^- b ar{b}$ at NLO
- 5. The observable m_{lb}
- 6. Top quark asymmetries

QCD processes at hadron colliders

- Scattering of hadrons which are bound states of quarks and gluons
- Factorization of short and long distance physics
- Parton distribution functions *f_a(x)* (universal) have to be measured
- Partonic cross section
 ô_{ab} can be calculated perturbatively

$$d\sigma(P_1, P_2) = \sum_{a,b} \int dx_1 \, dx_2 \, f_a(x_1) \, f_b(x_2) \, d\hat{\sigma}_{ab}(x_1 P_1, x_2 P_2)$$

Parton shower and hadronization (final state evolution)

Parton level

Final state contains only particles generated by the hard scattering

Shower level

Additional gluons and quark pairs due to soft and collinear emissions

Hadron level

Coloured particles in the final state are clustered into hadrons which subsequently decay to stable particles

Parton shower and hadronization (final state evolution)

Parton level

Final state contains only particles generated by the hard scattering

Shower level

Additional gluons and quark pairs due to soft and collinear emissions

Hadron level

Coloured particles in the final state are clustered into hadrons which subsequently decay to stable particles

Parton shower and hadronization (final state evolution)

Parton level

Final state contains only particles generated by the hard scattering

Shower level

Additional gluons and quark pairs due to soft and collinear emissions

Hadron level

Coloured particles in the final state are clustered into hadrons which subsequently decay to stable particles

Perturbative expansion in α_S

$$d\hat{\sigma}_{ab} = \alpha_{S}^{k}(\mu) \sum_{m=0}^{\infty} d\hat{\sigma}_{ab}^{(m)}(\mu) \alpha_{S}^{m}(\mu)$$

NLO cross section

$$\sigma^{NLO} = \int_{N} d\sigma^{B} + \int_{N} d\sigma^{V} + \int_{N+1} d\sigma^{R}$$

J. Schlenk (MPP)

Top quark observables @ NLO

July 23, 2013 5 / 23

Perturbative expansion in α_S

$$d\hat{\sigma}_{ab} = \alpha_{S}^{k}(\mu) \sum_{m=0}^{\infty} d\hat{\sigma}_{ab}^{(m)}(\mu) \alpha_{S}^{m}(\mu)$$

NLO cross section

Perturbative expansion in α_S

$$d\hat{\sigma}_{ab} = \alpha_{S}^{k}(\mu) \sum_{m=0}^{\infty} d\hat{\sigma}_{ab}^{(m)}(\mu) \alpha_{S}^{m}(\mu)$$

NLO cross section

 $\sigma^{NLO} = \int_{N} d\sigma^{B} + \int_{N} d\sigma^{V} + \int_{N+1} d\sigma^{R}$

J. Schlenk (MPP)

Top quark observables @ NLO

July 23, 2013 5 / 23

Perturbative expansion in α_S

$$d\hat{\sigma}_{ab} = \alpha_{S}^{k}(\mu) \sum_{m=0}^{\infty} d\hat{\sigma}_{ab}^{(m)}(\mu) \alpha_{S}^{m}(\mu)$$

NLO cross section

J. Schlenk (MPP)

Infrared subtraction

- Virtual and real part diverge separately in the infrared limit
- The sum of both is finite
- Introduce subtraction terms which locally cancel the divergences:

$$\sigma^{NLO} = \int_{N} d\sigma^{B} + \int_{N} \underbrace{\left[d\sigma^{V} + \int_{1} d\sigma^{A} \right]}_{\text{poles cancel after 1D integration}} + \int_{N+1} \underbrace{\left[d\sigma^{R} - d\sigma^{A} \right]}_{\text{finite}}$$

 Different possibilities for choosing the subtraction terms: Catani-Seymour subtraction Catani, Seymour (1997), Antenna subtraction Kosower (1998) Gehrmann-De Ridder, Gehrmann, Glover (2005), FKS subtraction Frixione, Kunszt, Signer (1996)

J. Schlenk (MPP)

Calculation of virtual corrections

$$\mathcal{M}_{N} = \int d^{D}q \frac{N(q)}{D_{1}(q)...D_{N}(q)}$$
with
$$V(q) = C_{0} + C_{1}^{\mu_{1}}q_{\mu_{1}} + C_{2}^{\mu_{1}\mu_{2}}q_{\mu_{1}}q_{\mu_{2}} + ...$$

$$D_{i}(q) = (q + \sum_{k=1}^{i} p_{k})^{2} - m_{i}^{2}$$

 \mathcal{M}_N can be expanded in a basis of scalar master integrals:

$$\mathcal{M}_N = d + c + c + b - \bigcirc + a - \bigcirc + \mathcal{R}$$

Master integrals are known

Different approaches to amplitude reduction: Passarino-Veltman reduction Passarino, Veltman (1979), OPP method Ossola, Papadopoulos, Pittau (2007), ...

J. Schlenk (MPP)

Top quark observables @ NLO

July 23, 2013 7 / 23

Calculation of virtual corrections

$$\mathcal{M}_{N} = \int d^{D}q \frac{N(q)}{D_{1}(q)...D_{N}(q)}$$
with
$$N(q) = C_{0} + C_{1}^{\mu_{1}}q_{\mu_{1}} + C_{2}^{\mu_{1}\mu_{2}}q_{\mu_{1}}q_{\mu_{2}} + ...$$

$$D_{i}(q) = (q + \sum_{k=1}^{i} p_{k})^{2} - m_{i}^{2}$$

 \mathcal{M}_N can be expanded in a basis of scalar master integrals:

$$\mathcal{M}_{N} = d + c + c + b - c + a - c + \mathcal{R}$$

Master integrals are known.

Different approaches to amplitude reduction: Passarino-Veltman reduction Passarino, Veltman (1979), OPP method Ossola, Papadopoulos, Pittau (2007), ...

J. Schlenk (MPP)

Run card contains process information and options

- ► Feynman diagram topologies are generated with QGRAF Nogueira (1993)
- Integrand is generated with FORM Vermaseren (1984 -) and Fortran code is produced
- Integrand reduction can be chosen at runtime: Samurai (D-dimensional OPP) Mastrolia, Ossola, Reiter, Tramontano (2010), Golem95c (Tensor-reduction) Binoth, Cullen, Guillet, Heinrich, Kleinschmidt, Pilon, Reiter, Rodgers, von Soden-Fraunhofen (2005 -)
- Evaluation of scalar master integrals with OneLOop van Hameren (2010), QCDLoop Ellis, Zanderighi (2007), LoopTools Hahn, Perez-Victoria 1998 and/or Golem95c
 - J. Schlenk (MPP)

- Run card contains process information and options
- Feynman diagram topologies are generated with QGRAF Nogueira (1993)
- Integrand is generated with FORM Vermaseren (1984 -) and Fortran code is produced
- Integrand reduction can be chosen at runtime: Samurai (D-dimensional OPP) Mastrolia, Ossola, Reiter, Tramontano (2010), Golem95c (Tensor-reduction) Binoth, Cullen, Guillet, Heinrich, Kleinschmidt, Pilon, Reiter, Rodgers, von Soden-Fraunhofen (2005 -)
- Evaluation of scalar master integrals with OneLOop van Hameren (2010), QCDLoop Ellis, Zanderighi (2007), LoopTools Hahn, Perez-Victoria 1998 and/or Golem95c
 - J. Schlenk (MPP)

- Run card contains process information and options
- Feynman diagram topologies are generated with QGRAF Nogueira (1993)
- Integrand is generated with FORM Vermaseren (1984 -) and Fortran code is produced
- Integrand reduction can be chosen at runtime: Samurai (D-dimensional OPP) Mastrolia, Ossola, Reiter, Tramontano (2010), Golem95c (Tensor-reduction) Binoth, Cullen, Guillet, Heinrich, Kleinschmidt, Pilon, Reiter, Rodgers, von Soden-Fraunhofen (2005 -)
- Evaluation of scalar master integrals with OneLOop van Hameren (2010), QCDLoop Ellis, Zanderighi (2007), LoopTools Hahn, Perez-Victoria 1998 and/or Golem95c
 - J. Schlenk (MPP)

- Run card contains process information and options
- Feynman diagram topologies are generated with QGRAF Nogueira (1993)
- Integrand is generated with FORM Vermaseren (1984 -) and Fortran code is produced
- Integrand reduction can be chosen at runtime: Samurai (D-dimensional OPP) Mastrolia, Ossola, Reiter, Tramontano (2010), Golem95c (Tensor-reduction) Binoth, Cullen, Guillet, Heinrich, Kleinschmidt, Pilon, Reiter, Rodgers, von Soden-Fraunhofen (2005 -)
- Evaluation of scalar master integrals with OneLOop van Hameren (2010), QCDLoop Ellis, Zanderighi (2007), LoopTools Hahn, Perez-Victoria 1998 and/or Golem95c
 - J. Schlenk (MPP)

- General purpose Monte Carlo event generator
- Provides
 - Multi-leg tree level matrix elements (Born and real part)
 - Implementation of Catani-Seymour dipole subtraction
 - Phase space integration
 - Parton shower
 - Hadronization
 - Hadron decays
- > Event generation is possible at parton, shower and hadron level

Gleisberg, Höche, Krauss, Schönherr, Schumann, Siegert, Winter, Zapp

J. Schlenk (MPP)

Top quark observables @ NLO

July 23, 2013 9 / 23

The Binoth Les Houches Accord

 Interface between Monte-Carlo program (MC) and one-loop amplitude provider (OLP)

- Divided in initialization and runtime phase
- The interface is implemented in GoSam and Sherpa

Binoth et al. (2010)

J. Schlenk (MPP)

Top quark observables @ NLO

July 23, 2013 10 / 23

The process $pp
ightarrow W^+ W^- b ar{b}$

- Top quark pair production and decay including nonresonant contributions
- Both W bosons decay leptonically (dilepton channel)
- The approximation $m_b = 0$ is made
- Previous top quark calculations were done under the assumption that production and decay factorize (Neglects contributions which are suppressed by powers of ^Γ/_{mt} ~ 0.02)

Biswas, Melnikov, Schulze (2010)

 First calculated at NLO by Denner, Dittmaier, Kallweit, Pozzorini (2011) and Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek (2011)

Top quark observables @ NLO

July 23, 2013 11 / 23

The process $pp
ightarrow W^+ W^- b ar{b}$

Four subprocesses:

	Diagrams	Hel.	t/PS[ms]
иū	14 + 334	4	53
dā	14 + 334	4	52
ЬБ	28 + 668	4	141
gg	31 + 1068	8	859

• Complex mass scheme for top quarks: $m_t^2 \rightarrow m_t^2 - im_t \Gamma_t$

J. Schlenk (MPP)

NLO comparison with arxiv:1207.5018

Comparison for one phase space point taken from arxiv:1207.5018 Denner,

Dittmaier, Kallweit, Pozzorini (2012)

$$egin{aligned} |\mathcal{M}|^2_{tree} &= a_0 \ |\mathcal{M}|^2_{1-loop} \propto c_0 + rac{c_{-1}}{\epsilon} + rac{c_{-2}}{\epsilon^2} + \mathcal{O}(\epsilon) \end{aligned}$$

иū	GoSam	[1207.5018]
$a_0 \cdot 10^{-5}$	1.568863069202787	1.568863069202805
<i>c</i> ₀	0.3465309799416799	0.346530980271734
<i>c</i> ₋₁	-0.1030794160242820	-0.103079416107610
<i>C</i> ₋₂	-0.09296228519248788	-0.0929622851927013
gg		
$a_0 \cdot 10^{-5}$	4.554053154627902	4.554053154627972
<i>c</i> ₀	0.5717396603625836	0.571739679133372
<i>c</i> ₋₁	-0.03212591118591111	-0.032125892699063
<i>c</i> ₋₂	-0.1510637134379715	-0.1510637134378864

J. Schlenk (MPP)

Cross section

Renormalization scale:

$$\mu = \frac{H_T}{2} = \frac{1}{2} \sum_i p_{T,i}$$

Scalar sum over transverse momenta of all final state particles

Total cross section (LHC 7 *TeV*):

$$\begin{split} \sigma_{\rm LO}[{\rm fb}] &= 638.5^{+38.5\%}_{-24.8\%}({\rm scale}) \pm 0.014\%({\rm stat.}) \\ \sigma_{\rm NLO}[{\rm fb}] &= 757.3^{-3.0\%}_{-5.4\%}({\rm scale}) \pm 0.3\%({\rm stat.}) \end{split}$$

J. Schlenk (MPP)

Cross section

Renormalization scale:

$$\mu = \frac{H_T}{2} = \frac{1}{2} \sum_i p_{T,i}$$

Scalar sum over transverse momenta of all final state particles

Total cross section (LHC 7 TeV):

$$\begin{split} \sigma_{\mathsf{LO}}[\mathsf{fb}] &= 638.5^{+38.5\%}_{-24.8\%}(\mathsf{scale}) \pm 0.014\%(\mathsf{stat.}) \\ \sigma_{\mathsf{NLO}}[\mathsf{fb}] &= 757.3^{-3.0\%}_{-5.4\%}(\mathsf{scale}) \pm 0.3\%(\mathsf{stat.}) \end{split}$$

J. Schlenk (MPP)

Top quark observables @ NLO

July 23, 2013 14 / 23

Invariant mass of b-jet and lepton m_{lb}

- Definition: $m_{lb} = (p_{b-jet} + p_l)^2$
- Parton level calculation at next to leading order
- Distribution is sensitive to the value of the top quark mass
- Useful handle for precision measurement of the top quark mass
- Collaboration with the ATLAS group at MPI

m_{lb} at NLO

• Large NLO corrections to the shape of m_{lb}

J. Schlenk (MPP)

Top quark observables @ NLO

July 23, 2013 16 / 23

m_{lb} at NLO

- Large NLO corrections to the shape of m_{lb}
- m_{lb} has sharp cut-off at $\sqrt{m_t^2 m_W^2}$ in narrow width approximation

J. Schlenk (MPP)

Top quark asymmetries

Top quark forward-backward asymmetry at Tevatron

$$A_{t\bar{t}}^{FB} = \frac{\sigma (\Delta y > 0) - \sigma (\Delta y < 0)}{\sigma (\Delta y > 0) + \sigma (\Delta y < 0)}$$
$$\Delta y = y_t - y_{\bar{t}}$$

Leptonic asymmetry

$$\Delta y \rightarrow \Delta \eta = \eta_{I^+} - \eta_{I^-}$$

Partly inherits Δy effect, no dependence on reconstruction

- Discrepancy between Tevatron data and SM predictions ($\sim 2.5\sigma$)
- Asymmetries are zero for LO top quark production

J. Schlenk (MPP)

Correlation between Δy and $\Delta \eta$

 $\frac{1}{\sigma_{\rm LO}}\frac{{\rm d}\sigma_{\rm LO}}{{\rm d}\eta{\rm d}y}$

J. Schlenk (MPP)

July 23, 2013 18 / 23

Correlation between Δy and $\Delta \eta$

Top quark observables @ NLO

July 23, 2013 18 / 23

Correlation between Δy and $\Delta \eta$

Top quark observables @ NLO

July 23, 2013 18 / 23

Dependence on $p_{T,l}$ cut

 $\mu = m_t$

J. Schlenk (MPP)

Top quark observables @ NLO

July 23, 2013 19 / 23

Dependence on $p_{T,l}$ cut

$$\mu=
ho_{\mathcal{T},t}=\sqrt{m_t^2+
ho_{\mathcal{T},\mathsf{leading}}^2}$$
 jet

Conclusions

Summary

- NLO QCD calculations at hadron colliders
- Overview over physics of GoSam (one loop amplitude provider) and Sherpa (MC generator)
- The process $pp
 ightarrow W^+ W^- b ar{b}$
 - ▶ The observable *m*_{*lb*}: Precision top quark mass determination
 - Top quark asymmetries: Lepton-based asymmetries as clean handle to improve understanding of SM contribution to asymmetry

Thank you for your attention

J. Schlenk (MPP)

Top quark observables @ NLO

July 23, 2013 21 / 23

Conclusions

Summary

- NLO QCD calculations at hadron colliders
- Overview over physics of GoSam (one loop amplitude provider) and Sherpa (MC generator)
- The process $pp
 ightarrow W^+ W^- b ar{b}$
 - ▶ The observable *m*_{*lb*}: Precision top quark mass determination
 - Top quark asymmetries: Lepton-based asymmetries as clean handle to improve understanding of SM contribution to asymmetry

Thank you for your attention

J. Schlenk (MPP)

Top quark observables @ NLO

July 23, 2013 21 / 23

Backup

July 23, 2013 22 / 23

NLO distributions

Top quark observables @ NLO

July 23, 2013 23 / 23