A new MDT-based L1 trigger for ATLAS

Sebastian Nowak

nowak@mpp.mpg.de

Max-Planck-Institut für Physik, Munich

Young Scientist Workshop, Ringberg Castle

July 23, 2013

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

The ATLAS Muon Spectrometer

designed for LHC nominal luminosity: $\mathcal{L} = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Precision tracking chambers

1150 Monitored Drift Tube Chambers (MDT) 32 Cathode Strip Chambers (CSC)

Trigger chambers

606 Resistive Plate Chambers (RPC) 3588 Thin Gap Chambers (TGC)

The ATLAS MDT chambers

- Gas mixture: Ar/CO₂ (93/7)
- 3 bar absolute pressure
- $\bullet~$ Max. drift time: $\approx 700\,\text{ns}$
- Single tube resolution: 80 μm
- Wire positioning accuracy: \approx 20 μm
- Chamber tracking resolution: $\approx 40\,\mu m$

Muon tracks for different momenta

RPC: Resistive Plate Chamber \rightarrow Trigger chamber

LHC Long Term Schedule

Rates in the ATLAS Muon Spectrometer

- Neutrons, γs and charged hadrons from secondary reactions in detector components and shielding cause high background rates
- Background rate increases proportional with the luminosity
- \Rightarrow Rate capability in the *Big Wheels* exceeded

MDT read-out chain (now)

MDT read-out chain (proposed)

Use of more precise MDT information for triggering.

ATLAS Muon Trigger and DAQ System

ATLAS Muon Trigger and DAQ System

New concept (Upgrade Phase 2):

Level 0: Trigger chambers \rightarrow MDT fast read-out

Level 1: MDT chambers fast read-out \rightarrow MDT read-out

Level 2: Track reconstruction

Performance of the existing L1 p_T trigger

- The interesting physics is mainly at p_T above ~ 20 GeV (see W,Z cross section)
- The slope of the inclusive p_T spectrum is rising very steeply with decreasing p_T

 \rightarrow threshold definition of the L1 trigger must be sharp to avoid high trigger rates from low p_T muons

Histogram based track finding algorithm

for an additional MDT fast read-out

Bunch crossing: Time of muon production

Simulation framework

- Stand-alone Monte Carlo simulation
- Adjustable parameters:
 - Drift tube chamber geometry
 - Angle of incidence of the muon and spread of the angle
 - Rate of non-correlated background
 - Effect of δ-rays
- Inefficient regions (tube walls, glue gaps) are included
- Real r-t relation (implemented as look-up table)

Performance studied as a function of the background rate with and without spread of the incident muon angle

Parameters used for all simulation

14/21

Definitions for simulation results

Efficiency:

• Calculated track is within 2 mm region (bin width) of real track

Fake probability without ROI (Region Of Interest):

- Calculated track is outside 2 mm region of real track
- The track fitting is not based on trigger chambers information

Fake probability with ROI:

- Calculated track is within 3 cm ROI and outside 2 mm region of real track
- The track fitting is based on trigger chambers information

MDT Level-1 muon trigger simulation for EML1

No incidence angle spread

With δ-rays

Fake probability without ROI: 0.5%

Incidence angle spread

• Angle: α = 0.123 rad

Expected incidence angle spread for EML ($p_T = 32 \text{ GeV}$):

Trigger chamber information not available Trigger chamber information available 20 mradalgorithm inefficient3 mradminor degradation

Test of new read-out hardware (planned)

CERN Gamma Irradiation Facility (GIF)

Goal: Measurement of efficiency and resolution of additional fast read-out

- $\bullet\,$ No muon beam in the GIF \rightarrow use (low energy) cosmic muons
- Fast read-out and normal read-out are triggered by scintillators
- \Rightarrow Trigger chambers information is calculated out of muon tracks

Summary and Outlook

- HL-LHC luminosities lead to ATLAS muon spectrometer trigger rate problem
- ightarrow Proposal of an MDT-based additional trigger
 - Simulation results for most difficult region (occupancy 10%):
 - Efficiency: 98.5%
 - Fake probability: 0.5%
 - Hardware test setup in development
 - First test planned in autumn 2013

New trigger implementation based on MDT

Angular resolution of trigger chambers: 3.0 mrad Necessary angular resolution: 1.0 mrad

Fast MDT read-out resolution:

25 ns / 12.5 ns \rightarrow 0.5 / 0.26 [mm] \rightarrow 1.7 / 0.9 [mrad]

Hardware implementation

MDT LO-Trigger Prototype Scheme