Young Scientist Workshop July 2013, Ringberg

Germanium Detector R&D with the GALATEA TEST-STAND

Lucia Garbini for the GeDet collaboration

\rightarrow Introduction

- research fields with Ge detectors
- importance of Ge detector R&D

\rightarrow GALATEA phase 2:

- experimental setup
- data taking
- data analysis

\rightarrow Conclusions

- summary & outlook

Where can germanium detectors be used?

- gamma ray spectrometry
 - AGATA, GRETA
 - astronomical spectroscopy: INTEGRAL
- neutrinoless double beta decay
 - Heidelberg Moscow, GERDA, Majorana
- dark matter
 - CoGeNT, TEXONO, CDEX, HEDELWEISS

Next generation experiment:

- higher sensitivity
- more **Germanium** (\rightarrow 1 Ton)
 - general purpose

- combine different requirements

- different region of interest
- different detection techniques

\rightarrow central role of detector research and development

- simulate **new geometries**
- try to have a new prototype produced
- and then TEST IT!!!

Cylindrical true-coaxial n-type HPGe detector

- **18** + **1** fold segmentation(**3z and 6**φ)
- additional top segment
 - study surface effects
 - not fully metallized: field effects
- charge trapping and mobility
- segmentation effects
- crystallographic axes
- impurities uniformity

- Dimensions:

 \rightarrow h = 70 mm

 \rightarrow r_{inner} = 5.05 mm

 \rightarrow r_{outer} = 37.5 mm

How is the signal created in SuSie?

Signal creation:

- radiation interacts with Ge \rightarrow e and h created
 - electrons go to the core electrode
 - holes go to the segment electrodes
- 2 different situations:
 - single segment events
 - multi segments events
- signals both from:
 - hit segments (total of **19 channels to read out**!)
 - core (triggering channel)

What do we obtain:

- pulses in all channel
 - pulse shape analysis
- energy spectra from all channels
 - spectroscopy

R&D with Ge detectors (III): GALATEA test-stand from outside

GALATEA: from the inside

\rightarrow WHY?

- sources nearer to the detector
 - possible scan with $\,\alpha s\,$ and $\,\beta s\,$
- detector not immersed in LN2
 - less technical requirements for the detector

\rightarrow HOW?

- Turbo Pump

- big VAT valve (shutter)
- GALATEA tank \rightarrow big surface
 - outgassing
 - tank CONDITIONING
 - heating & pumping (110-130 °C)
 - 2-3 weeks cycles

- after CONDITIONING:

- system pumped:
 - p = O(5x10⁻⁹ mbar)
- system not pumped:

 $p = O(10^{-5} \text{ mbar})$ for ca. 2 weeks

Ap. Dg > 1 t

\rightarrow WHY?

- semiconductor detector

cryogenic operating temperature

\rightarrow HOW?

- cooling finger
- IR shield
- Cryo-tank
 - automatic refilled LN2 level controller
 - LCR meter for a decoupled information
 super insulation foil
 - around the cryotank
 - inside the tank walls

NOTE: the detector should not be the coolest place in the system!!

- How?

- detector equipped with readout cables
 - 19th segment has a stand alone cable
- electronic board inside the tank
 - → reduce the noise level BUT... **PROBLEMS** FOR THE VACUUM!!
 - preamplifier modules
 - HV connection for the detector
 - LV connection
 - 4 Pt100 sensors

Something has to move

Ap. Dg > 1 t

\rightarrow WHY?

- perform a 3D scan of the detector
 - multiple sources

\rightarrow HOW?

- 3 UHV compatible motors
 - vertical
 - horizontal
 - circular
- 2 collimators
 - SIDE: solidal with VM
 - TOP: solidal with HM

Tungsten segments

First data set : 29th of April 2013

_

studies about the **noise level due to sensors** were performed → in the best configuration: **resolution @ 2614 keV of 3.94 ± 0.03 keV**

Event Display: pulses in all the channels

- Cross talk form capacitive coupling among segments and core:

- Lithium drift on the core (metallic surface)
- metallization of the external surface (segments)
 - \rightarrow capacitance core-seg: core to segment cross talk O(0.1%)
 - \rightarrow capacitance seg-seg: segment to segment cross talk O(0.1%)

- Cross talk from the cabling:

- core signal pre-amplified close to the detector (FET):
 - \rightarrow big and negative
- segment cables on the detector well shielded
- core + segments cables to the preamp board not well shielded
 - \rightarrow possible big core-to-seg cross talk

- Cross talk from the preamplifiers:

- charge sensitive preamplifiers
- charges go in and go out amplified
- they become capacitors facing one to each other
 - \rightarrow possible big seg-to-seg cross talk

Ap Ag >t t

Everything what is read by a segment is read by the core as well!
 → strong correlation between the MCA values

MCA in 19th seg vs MCA in the core

Main ideas to find CORE-TO-SEGMENT cross talk:

- Single Segment event selection
 - energy deposited in only one segment
 - signal seen ONLY from the segment and the core
 - selection: $|E_{core} E_i| < 20 \text{ keV}$
 - assumption: Core independently calibrated
 - rough calibration for segments
- root minimizer used for each segment separately
- Not Hit Segment

- CORRECTED energy SHOULD be zero

 $MCA_i + x_{0i}MCA_0 = 0$

 \rightarrow cross talk correction factors \mathbf{x}_{oi}

- Hit segment
 - CORRECTED energy SHOULD be equal to the CORE ENERGY

$$E_0 - (a_i + b_i (MCA_i + x_{0i}MCA_0)) = 0$$

 \rightarrow offset and slope calibration factors: $a_i b_i$

- energies corrected and calibrated:
 - only core-To-Seg correction applied

An Agzit

- energies corrected and calibrated:
 - only core-To-Seg correction applied

What we achieved:

- GALATEA IS FINALLY RUNNING

- ca 3 years of commissioning
- vacuum and cryogenics totally under control
- the noise effects due to each sensors were studied
- first order x-talk correction obtained in an automatized way
- first scanning of the detector has been done

What we want to achieve:

- characterization of the entire system

- segment mapping (ch3 is really seg3??)
- seg-to-seg cross talk determination and correction

- characterization of the detector

- axes determination
- charge trapping effects
- surface effects on the 19th segment
- mirror pulses

BACKUP SLIDES

Online monitoring... remotely controllable!!

 $\Delta p \cdot \Delta q \ge \frac{1}{2} t$

24

SuSie, Single- and Multi-Segment Events

