Looking for muon-induced neutrons in Ge detectors

Matteo Palermo

RISE summer students: Costanza Carissimo Sergio Acero

Young Scientist Workshop 2013 @ Ringberg Castle

On behalf of the GeDet group Max-Planck-Institut für Physik, München

23/07/2013

- Low Background Experiments
- Background Sources
- > The China JinPing Laboratory
- > Introduction to Germanium Detectors

- > The muon-setup
- > The AmBe measurement
- Neutrons Interactions
- > First results
- Summary & Outlook

- Low Background Experiments
- Background Sources
- > The China JinPing Laboratory
- > Introduction to Germanium Detectors

- > The muon-setup
- > The AmBe measurement
- Neutrons Interactions
- > First results
- Summary & Outlook

- Low Background Experiments
- Background Sources
- > The China JinPing Laboratory
- > Introduction to Germanium Detectors

- > The muon-setup
- > The AmBe measurement
- Neutrons Interactions
- > First results
- Summary & Outlook

- > Low Background Experiments
- Background Sources
- > The China JinPing Laboratory

> Introduction to Germanium Detectors

- > The muon-setup
- > The AmBe measurement
- Neutrons Interactions
- > First results
- Summary & Outlook

- > Physics motivation:
 - > Low Background Experiments
 - Background Sources
 - > The China JinPing Laboratory
- > Introduction to Germanium Detectors

- > The muon-setup
- > The AmBe measurement
- Neutrons Interactions
- > First results
- Summary & Outlook

- > Physics motivation:
 - > Low Background Experiments
 - Background Sources
 - > The China JinPing Laboratory
- > Introduction to Germanium Detectors

> The muon-setup

> The AmBe measurement

- Neutrons Interactions
- > First results
- Summary & Outlook

- > Physics motivation:
 - > Low Background Experiments
 - Background Sources
 - > The China JinPing Laboratory
- > Introduction to Germanium Detectors

- > The muon-setup
- > The AmBe measurement
- > Neutrons Interactions
- > First results
- Summary & Outlook

- > Physics motivation:
 - > Low Background Experiments
 - Background Sources
 - > The China JinPing Laboratory
- > Introduction to Germanium Detectors

- > The muon-setup
- > The AmBe measurement
- > Neutrons Interactions

> First results

Summary & Outlook

- > Physics motivation:
 - Low Background Experiments
 - Background Sources
 - > The China JinPing Laboratory
- > Introduction to Germanium Detectors
- > Project Description:
 - > The muon-setup
 - > The AmBe measurement
 - Neutrons Interactions
 - > First results

Summary & Outlook

Low Background Experiments

Particularly rare physics processes like:

- > Neutrinoless Double Beta Decay
- Low Energy Neutrinos' interaction (solar, sterile neutrinos etc)

Proton decay

Experiments have very small expected event rates!!
 (e.g. 0v2β decay < 0.1 events/(kg y))</pre>

They ALL need a very low background!!

Expected Event Rate

What we can do to enhance the expected event rate?

> Increase the exposure:

increase the data taking
period

What we can do to enhance the expected event rate?

Increase the exposure:

increase the data taking
period

increase the mass → 1 Ton experiments

Expected Event Rate

What we can do to enhance the expected event rate?

- Increase the exposure:
 - increase the data taking
 period
 - increase the mass → 1 Ton experiments
- > Increase the S/B ratio:

► reduce the background
→ Move deeper Underground
→ Effective Shielding

- Low Background Experiments
- Background Sources
- > The China JinPing Laboratory
- > Introduction to Germanium Detectors

- > The muon-setup
- > The AmBe measurement
- Neutrons Interactions
- > First results
- Summary & Outlook

- Low Background Experiments
- Background Sources
- > The China JinPing Laboratory
- > Introduction to Germanium Detectors

- > The muon-setup
- > The AmBe measurement
- Neutrons Interactions
- > First results
- Summary & Outlook

Future and Present: the China JinPing Laboratory

23/07/2013

Future and Present: the China JinPing Laboratory

Courtesy of Prof. Zeng Zhi, Tsinghua University, Beijing

23/07/2013

	Futu	re and Pre	esent:
Underground Lab	China Rock Depth (m)	JinPing L Muon Flux (m ⁻² ·S ⁻¹)	aboratory neutron flux by muon (m ⁻² ·s ⁻¹)
Boulby UK	1100	4.5×10 ⁻⁴ [3]	8.70 ×-6 [4]
Canfranc , Spain	850	(2~4)×10 ^{-3 [3]}	(1.73±0.91) ×10 ^{-5 [5]}
Modane , French	1700	4.7×10 ⁻⁵ [3]	5.6×10 ^{-2 [3]}
Gran Sasso, Italy	1400	3.0×10 ⁻⁴ [3]	3.78×10 ⁻² [3]
Baksan,Russia	2100	3.03±0.19×10 ⁻⁵ [3]	1.4×10 ⁻³ (E>1.0MeV) ^[3]
Kamiokande, Japan	1000	3.0×10 ⁻³ ^[3]	<pre>(8.25±0.58) ×10⁻² (thermol) ^[3] (11.5±1.2) ×10⁻² (non-</pre>
SNO,CA	2000	3.0×10 ^{-6 [3]}	4.7×10 ⁻² (thermol) ^[3] 4.6×10 ⁻² (fast) ^[3]
Soudan, US	700	2.0×10 ⁻³ [3]	-
DUSEL,US	1478	4.4×10 ⁻⁵ [6]	-
CJPL, China	2400	3.17×10 ⁻⁶ (simulation) 2.0×10 ⁻⁶ (measurement)	8.37×10 ⁻⁷ (simulation)
rtesy of Prof. Zeng Zhi,	Tsinghua Universi	ity, Beijing	

23/07/2013

EI

- > Low Background Experiments
- Background Sources
- > The China JinPing Laboratory

> Introduction to Germanium Detectors

- > The muon-setup
- > The AmBe measurement
- Neutrons Interactions
- > First results
- Summary & Outlook

Germanium Detectors

Widely used in nuclear physics experiments and DM searches

- > Concept:
 - Semiconductor diodes with p- or n- structure
 - > Reverse biasing
 - > Sensitive to ionizing radiation
 - > Depleted,sensitive thickness of several cm
 (for Si only mm)
 - Cryogenic Temperatures

> Advantages:

- > Measurement of low levels of radioactivity
- > High gamma-ray detection efficiency
- > Excellent energy resolution (~keV)

Germanium Detectors

Detector configurations:

Planar

Point-contact

True-coaxial

> Electrode configurations for coaxial detectors:

Source: Med Phys 4R06/6R03 Radioisotopes and Radiation Methodology Chapter 8: "Hyper-Pure Germanium Detector"

23/07/2013

- > Physics motivation:
 - > Low Background Experiments
 - Background Sources
 - > The China JinPing Laboratory
- > Introduction to Germanium Detectors

- > The muon-setup
- > The AmBe measurement
- Neutrons Interactions
- > First results
- Summary & Outlook

Looking for neutrons

- > Project description:
 - > Muon-induced neutrons
 - Cosmogenic neutrons
 - Study of the effect of different materials
- > Challenge:

 Can we actually distinguish the muon-induced from the cosmogenic ones?
 The Background can be too high

- > Future?:
 - > Move in a shallow underground lab (CJPL??)
 - > Improve the experimental setup

- > Physics motivation:
 - Low Background Experiments
 - Background Sources
 - > The China JinPing Laboratory
- > Introduction to Germanium Detectors

- > The muon-setup
- > The AmBe measurement
- Neutrons Interactions
- > First results
- Summary & Outlook

23/07/2013

The Experimental Setup: eXtended Range GeDet

• Resolution: 2 keV @ 1.33 MeV

• p-type

- Peak/Compton 67:1
- Aluminum End Cup
- Copper Holder
- HV = +3000 V
- Charge sensitive pre-amp
- Diameter 6.9 cm
- Lenght 7.2 cm
- Outer electrode (n+) 0.6 mm
- Inner electrode (p+) 0.3 μ m

- Lead:
 - thickness 10.5 cm
 - height 28 cm
- Copper shell:
 - Thickness 0.4 cm
- Scintillator paddles:
 - 12 x 21 x 2 cm^3
 - distance 48.5 cm
- •DAQ:
 - DGF Pixie-4 (high precision)
 - Sampling frequency 75 MHz
 - Spectra: 16-bit precision up to 32K channels

- Lead:
 - thickness 10.5 cm
 - height 28 cm
- Copper shell:
 - Thickness 0.4 cm
- Scintillator paddles:
 - 12 x 21 x 2 cm^3
 - distance 48.5 cm
- •DAQ:
 - DGF Pixie-4 (high precision)
 - Sampling frequency 75 MHz
 - Spectra: 16-bit precision up to 32K channels

Additional plastic end-cup covered with black tape

- Lead:
 - thickness 10.5 cm
 - height 28 cm
- Copper shell:
 - Thickness 0.4 cm
- Scintillator paddles:
 - 12 x 21 x 2 cm^3
 - distance 48.5 cm
- •DAQ:
 - DGF Pixie-4 (high precision)
 - Sampling frequency 75 MHz
 - Spectra: 16-bit precision up to 32K channels

- Lead:
 - thickness 10.5 cm
 - height 28 cm
- Copper shell:
 - Thickness 0.4 cm
- Scintillator paddles:
 - 12 x 21 x 2 cm^3
 - distance 48.5 cm
- •DAQ:
 - DGF Pixie-4 (high precision)
 - Sampling frequency 75 MHz
 - Spectra: 16-bit precision up to 32K channels

The Experimental Setup

- Lead:
 - thickness 10.5 cm
 - height 28 cm
- Copper shell:
 - Thickness 0.4 cm
- Scintillator paddles:
 - 12 x 21 x 2 cm^3
 - distance 48.5 cm
- •DAQ:
 - DGF Pixie-4 (high precision)
 - Sampling frequency 75 MHz
 - Spectra: 16-bit precision up to 32K channels

The Experimental Setup

• Lead:

- thickness 10.5 cm
- height 28 cm
- Copper shell:
 - Thickness 0.4 cm
- Scintillator paddles:
 - 12 x 21 x 2 cm^3
 - distance 48.5 cm

•DAQ:

- DGF Pixie-4 (high precision)
- Sampling frequency 75 MHz
- Spectra: 16-bit precision up to 32K channels

23/07/2013

- > Physics motivation:
 - > Low Background Experiments
 - Background Sources
 - > The China JinPing Laboratory
- > Introduction to Germanium Detectors

> Project Description:

> The muon-setup

> The AmBe measurement

- Neutrons Interactions
- > First results
- Summary & Outlook

23/07/2013

23/07/2013

23/07/2013

Matteo Palermo

5

72

6

 14 ± 2

7

1525)

 23^{21})

8

4.46

9

 3.9^{27})

 4.3^{26})

1

²⁴¹Am–Be

23/07/2013

2

5.48

3

 82 ± 8

4

 70 ± 3^{18})

- > Physics motivation:
 - > Low Background Experiments
 - Background Sources
 - > The China JinPing Laboratory
- > Introduction to Germanium Detectors

> Project Description:

- > The muon-setup
- > The AmBe measurement
- > Neutrons Interactions
- > First results
- Summary & Outlook

Neutrons Interactions

Neutron

- > Elastic Scattering: $n + {}^A_Z N \rightarrow n' + {}^A_Z N$
- > Inelastic Scattering: $n + {}^A_Z N \to ({}^{A+1}_Z N)^* \to n' + {}^A_Z N + \gamma$ $n + {}^{A}_{Z} N \to ({}^{A+1}_{Z} N)^{*} \to n' + {}^{A}_{Z+1} N^{+} + e^{-}$
- > Thermal Capture: $n +_{Z}^{A} N \to_{Z}^{A+1} N + \gamma |_{\stackrel{\text{Neutron}}{\circ} \leftarrow \bullet}$
- > Transmutation: $n + {}^A_Z N \rightarrow {}^A_{Z-1} N + p$ $n + \stackrel{A}{Z} N \rightarrow \stackrel{A-3}{Z-2} N + \stackrel{4}{2} \alpha$
- > Fission:

$$n + {}^{A}_{Z} N \to {}^{A_{1}}_{Z_{1}} X + {}^{A_{2}}_{Z_{2}} Y + n$$

0

 \bigcirc

23/07/2013

Neutrons Interactions

> Inelastic Scattering:

> Thermal Capture:

23/07/2013

- > Physics motivation:
 - > Low Background Experiments
 - Background Sources
 - > The China JinPing Laboratory
- > Introduction to Germanium Detectors

> Project Description:

- The muon-setup
- > The AmBe measurement
- > Neutrons Interactions

> First results

Summary & Outlook

AmBe neutron source: results $\Delta_{p} \Delta_{g \ge \frac{1}{2}} t$

Background Subtracted

23/07/2013

Matteo Palermo

Background Subtracted: 0-0.8 MeV

Fitted Energy	Fitted FWHM	Interaction type
$[\mathbf{keV}]$	$[\mathbf{keV}]$	
596.0 ± 0.1	0.6 ± 0.1	$^{74}Ge(n,n'\gamma)$
609.2 ± 0.2	1.0 ± 0.3	$^{74}Ge(n,n'\gamma)$

23/07/2013

Background Subtracted: 0-0.8 MeV

Fitted Energy	Fitted FWHM	Interaction type
$[{f keV}]$	$[{f keV}]$	
$691.8 \pm -$	-	$^{72}Ge(n,n'e)$
708.3 ± 0.2	0.7 ± 0.1	$^{35}Cl(n,\gamma)$

23/07/2013

Matteo Palermo

- > Physics motivation:
 - > Low Background Experiments
 - Background Sources
 - > The China JinPing Laboratory
- > Introduction to Germanium Detectors
- > Project Description:
 - > The muon-setup
 - > The AmBe measurement
 - Neutrons Interactions
 - > First results
- Summary & Outlook

- > Summary:
 - > Muon-induced neutrons
 - Cosmogenic neutrons
 - Study of the effect of different materials
 - Reference measurement with AmBe neutron source
- > Outlook:
 - > Perform simulations (γ -n discr., n time delay)
 - Move in a shallow underground lab (CJPL??)
 - > Build a neutron spectrometer (CJPL)

- [1] I. Abt, A.Caldwell. K. Kroeninger, J. Liu, X. Liu and B. Majorovits.
 "Neutron interactions as seen by a segmented germanium detector". Eur. Phys. J. A 36, 139-149 (2008).
- [2] T. Siiskonen, H. Toivonen.
 "A model for fitting peaks induced by fast neutrons in an HPGe detector". Nucl. Instrum. Meth. A 540 (2005) 403-411.
- [3] N. Jovancevic, M. Krmar, D. Mrda, J. Slivka and I. Bikit. "Neutron induced background gamma activity in low level GE-spectroscopy systems". Nucl. Instrum. Meth. A 612 (2010) 303-308.
- [4] K. W. Geiger, L. Van Der Zwan,"Radioactive neutron source spectra from Be(α,n)" Nucl. Inst. and Meth. 131 (1975) 315.
- [5] J. Ljungvall, J. Nyberg,

"A study of fast neutron interactions in high-purity germanium detectors" Nucl. Inst. and Meth. in Phy. Res. A 546 (2005) 553–573

Thank You for The Attention!

23/07/2013

Backup

Neutrons Cros Section

Environmental Natural Radioactivity

Tomasello et. al., Radioactive background in a cryogenic dark matter experiment, Astro. Phys., Vol 34, 2010

Matteo Palermo

△p. △g≥źt

Cosmic Rays Shower

23/07/2013

FWHM vs Energy (Gain3 & Gain6, gausian+something)

Natural Germanium

Isotope	Atomic mass (m _a /u)	Natural abundance (atom %)
⁷⁰ Ge	69.9242497 (16)	20.84 (87)
⁷² Ge	71.9220789 (16)	27.54 (34)
⁷³ Ge	72.9234626 (16)	7.73 (5)
⁷⁴ Ge	73.9211774 (15)	36.28 (73)
⁷⁶ Ge	75.9214016 (17)	7.61 (38)

Peaks due to neutron interactions			
Fitted Energy	Fitted FWHM	Interaction type	Threshold
[keV]	[keV]		[keV]
139.6 ± 0.0	0.6 ± 0.1	$^{74}Ge(n,\gamma^m)$	-
174.8 ± 0.1	0.5 ± 0.2	$^{70}Ge(n,n'\gamma)$?
198.3 ± 0.0	0.6 ± 0.0	$^{70}Ge(n,\gamma^m)$	2
326.0 ± 0.1	0.7 ± 0.1	$^{70}Ge(n,\gamma)$	-
500.0 ± 0.1	0.7 ± 0.1	$^{70}Ge(n,\gamma)$	
574.8 ± 0.4	0.7 ± 0.4	$^{74}Ge(n,\gamma)$	17.2
596.0 ± 0.1	0.6 ± 0.1	$^{74}Ge(n,n'\gamma)$?
609.2 ± 0.2	1.0 ± 0.3	$^{74}Ge(n,n'\gamma)$?
662.4 ± 0.1	0.7 ± 0.1	$^{140}Ce(n,\gamma)$	17.1
691.8 ± -	-	$^{72}Ge(n,n'e)$?
708.3 ± 0.2	0.7 ± 0.1	$^{35}Cl(n,\gamma)$	-
831.6 ± 0.4	0.9 ± 0.4	$^{70}Ge(n,\gamma)$	-
834.1 ± -		$^{72}Ge(n,n'\gamma)$?
843.9 ± 0.4	0.7 ± 0.3	$^{27}Al(n,n'\gamma)$?
846.9 ± 0.1	0.8 ± 0.1	${}^{56}Fe(n,n'\gamma)$?
868.2 ± 0.1	0.8 ± 0.2	$^{73}Ge(n,\gamma)$	
962.0 ± 0.2	0.7 ± 0.2	$^{63}Cu(n,n'\gamma)$?
1014.6 ± 0.3	0.9 ± 0.3	$^{27}Al(n,n'\gamma)$?
1096.8 ± 1.1	1.4 ± 0.4	$^{70}Ge(n,\gamma)$	_
1139.7 ± 0.4	0.9 ± 0.3	$^{70}Ge(n,\gamma)$	-
1165.0 ± 0.4	1.0 ± 0.4	$^{35}Cl(n,\gamma)$	-
1201.6 ± 0.1	0.8 ± 0.1	DEP of 2223.2	-
1204.4 ± 0.4	0.9 ± 0.4	$^{73}Ge(n,\gamma)$	-
1298.7 ± 0.3	0.8 ± 0.4	$^{70}Ge(n,\gamma)$	-
1327.2 ± 0.4	0.9 ± 0.4	$^{63}Cu(n,n'\gamma)$?
$1712.3^* \pm 0.1$	1.4 ± 0.1	SEP of 2223.2	
$1778.8^* \pm 0.3$	1.0 ± 0.3	$^{27}Al(n,\gamma)$	-
$2223.0^* \pm 0.0$	1.2 ± 0.0	$^{1}H(n,\gamma)$	

*These peaks where fitted on the gain 3 spectra.

Inelastic Scattering Distribution

Simulation

Courtesy of B. Doenmez, MPP Muenchen

In terms of background contribution due to neutrons in the ROI for **0v2ß decay** the neutron energy ranges of **meV** and **MeV (+600 eV)** are **basically the same**

BUT

we expect **less** neutrons in the **MeV** range **than** in the **meV** range

THEREFORE

It might be better to keep few MeV neutrons rather than several meV neutrons

To be kept in mind in the choice of the shielding!

A neutron detector, which is able to measure the neutrons energy, can be used to:

- > Improve the understanding of muon-induced shower
 - via measuring the neutron flux emanating from:
 - Lead
 - Copper
 - > Cryogenics Liquid
 - » Rock

Proposal: Muon-induced Neutron Flux

A neutron detector, which is able to measure the neutrons energy, can be used to:

- > Improve the understanding of muon-induced shower
 - via measuring the neutron flux emanating from:
 - Lead
 - Copper
 - > Cryogenics Liquid
 - » Rock
- > Test shielding properties of selected materials

Neutron detector

The UMD-NIST Fast Neutron Spectrometer

Segmentation

▲ Y

▲ Y

Side view

(mm)z 400 200 0 left -200 -400 -200 200 -400 400 0

Detector

right

X (mm)

```
23/07/2013
```


Possible idea to enhance the rate: having a bigger trigger surface

