Search for Signs of R-Parity Violating Supersymmetry in Multilepton Events with the ATLAS Detector

Max Goblirsch

IMPRS Young Scientists' Workshop, Ringberg 2013

24.07.2013

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Max Goblirsch (Ringberg 2013)

Multilepton RPV SUSY

24.07.2013 1/22

(One) Motivation: The Hierarchy Problem

- Higgs vacuum mass receives loop corrections from possible high-scale new physics
- $\rightarrow~corrections~scale \propto \Lambda_{\text{UV}}^2$ with the cutoff scale
- \rightarrow corrections scale $\propto m^2$ with masses of particles
- Recently, the Higgs¹ mass was measured to be $m_H \sim 125 \ {
 m GeV}$
- Planck-scale new physics: M²_{Pl} contributions fine-tuned down by 34 orders of magnitude?

Possible Solution: Symmetry

- Find a symmetry that automatically leads to cancellation of the loop terms
- Corrections from Bosons and Fermions have opposite signs
- ightarrow Idea of a symmetry assigning a matching boson to every fermion

\rightarrow Supersymmetry

¹pending sudden experimental evidence on the contrary

Supersymmetry (SUSY) as an extension of the standard model

Introduce a new symmetry transformation Q:

```
Q|\text{fermion}\rangle = |\text{boson}\rangle; \quad Q|\text{boson}\rangle = |\text{fermion}\rangle
```

→ Assign each particle in the standard model a supersymmetric partner

spins differ by $\frac{1}{2}$ • all other properties unchanged

Experimentally Observed √

Not Observed so far

 \rightarrow If there is SUSY, it must be a **broken** symmetry.

۲

R-Parity

• Writing down the allowed interaction terms in a (minimal) supersymmetric standard model, something interesting appears:

 $W_{\Delta B,L} = \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k + \kappa_i L_i H_d$

- \rightarrow i,j,k: generation indices
- $\rightarrow \lambda, \lambda', \lambda'', \kappa$: couplings.
- $\rightarrow L,$ Q: left-handed lepton/quark superfields (contain leptons and sleptons / quarks and squarks)
- → E,D,U: right handed lepton/ up-type quark / down-type quark superfields
- \rightarrow H_d: Higgs superfield coupling to down-type fermions
- ightarrow Baryon and Lepton number (accidentally conserved in SM) violated
- λ' and λ'' can mediate rapid **proton decay**

$$W_{\Delta B,L} = \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k + \kappa_i L_i H_d$$

- What can we do about these terms?
- Minimal supersymmetric standard model (MSSM): Impose conservation of a new quantum number, R-Parity

$$R_P = (-1)^{2s+3(B-L))} = egin{cases} +1(particles) \ -1(sparticles) \end{cases}$$

Consequences of R-Parity Conservation (RPC)

- B/L violating terms forbidden
- SUSY particles can only be created in pairs
- the lightest SUSY particle (LSP) is stable and electrically neutral
- → dark matter candidate!

Typical MSSM SUSY searches

- Conserved R-Parity: SUSY Particles produced in pairs
- Cascade decays to the LSP and standard model particles
- finally, the LSPs escape the detector
- \rightarrow apparent non-conservation of transverse momentum: $E_T^{Miss} = |\sum \vec{p_T}| > 0$
- Typical Search strategy: Cascade particles and high E^{Miss}

The situation today

- 2 years of searches at $\sqrt{s} = 7 / 8$ TeV
- Wide variety of search channels
- common result: everything consistent with standard model

ATLAS SUSY Searches* - 95% CL Lower Limits

PUTY Into Emiss (Califa-1)

Status: LP 2013 Model

- Many popular models almost completely excluded
- No SUSY (within our reach)?
 - Or is it cleverly hidden?

ATLAS Preliminary

Deference

 $\int \mathcal{L} dt = (4.4 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7,8 \text{ TeV}$

	woder	c, µ, . , /	Jets	т –	յջներ) Mass IIIIII		neierence
e Searches	MODEL MSUGRAVCMSSM MSUGRAVCMSSM $\tilde{g}_{i}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$ $\tilde{g}_{i}, \tilde{g} \rightarrow q \tilde{g}_{1}^{0}$ $\tilde{g}_{i}, \tilde{g} \rightarrow q q q \ell \ell (\ell) \ell_{1}^{0} \ell_{1}^{0}$ $\tilde{g}_{i} \rightarrow q q q q \ell (\ell) \ell_{1}^{0} \ell_{1}^{0}$ GMSB (k NLSP)	1 e,μ 0 0 1 e,μ 2 e,μ (SS) 2 e,μ	3-6 jets 7-10 jets 2-6 jets 2-6 jets 3-6 jets 3 jets 2-4 jets	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.7 4.7) Widss minit 	12.10V (av y (ii)) 11.10V (av y (ii)) 11.10V (av y (ii)) 11.10V (c)) 13.10V (c)) 13.10V (c)) 13.10V (c)) 13.10V (c)) 13.10V (c)) 13.10V (c)) 13.10V (c)) 13.10V (c)) 13.10V (c)) 14.10V (c)) 15.10V (c)	ATLAS-CONF-2013-062 ATLAS-CONF-2013-054 ATLAS-CONF-2013-054 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-062 ATLAS-CONF-2013-007 1208.4688
Inclusiv	GMSB (/ NLSP) GGM (bino NLSP) GGM (hino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino NLSP) Gravitino LSP	$1-2 \tau$ 2γ $1 e, \mu + \gamma$ γ $2 e, \mu (Z)$ 0	0-2 jets 0 1 <i>b</i> 0-3 jets mono-jet	Yes Yes Yes Yes Yes	20.7 4.8 4.8 5.8 10.5	8 8 619 GeV 8 9900 F ^{1/2} totale 645 GeV	1.4 TeV tan/2 > 18 1.07 TeV m(2 ²) > 50 GeV m(2 ²) > 50 GeV m(2 ²) > 20 GeV m(2 ²) > 200 GeV m(2 ²) > 200 GeV m(2 ²) > 200 GeV m(2 ²) > 200 GeV	ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-147
3" gen. g med.	$\begin{array}{c} \tilde{g} \rightarrow b \tilde{b} \tilde{t}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{t} \tilde{t}_{1}^{0} \\ \tilde{g} \rightarrow t \tilde{t} \tilde{t}_{1}^{0} \\ \tilde{g} \rightarrow b \tilde{t} \tilde{t}_{1}^{+} \end{array}$	0 0 0-1 e,μ 0-1 e,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	2 8 2 8	1.2 TeV m(t ² ₁)<800 GeV 1.14 TeV m(t ² ₁)<200 GeV	ATLAS-CONF-2013-061 ATLAS-CONF-2013-054 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$\begin{array}{l} & \tilde{b}_{1} \tilde{b}_{1}, \tilde{b}_{1} \rightarrow b \tilde{t}_{1}^{0} \\ \tilde{b}_{1} \tilde{b}_{1}, \tilde{b}_{2} \rightarrow b \tilde{t}_{1}^{1} \\ \tilde{c}_{1} \tilde{c}_{1} \tilde{c}_{1} \tilde{b}_{1} \rightarrow b \tilde{t}_{1}^{1} \\ \tilde{c}_{1} \tilde{c}_{1} \tilde{b}_{1} \tilde{b}_{1} \\ \tilde{c}_{1} \tilde{c}_{1} \tilde{b}_{1} \tilde{b}_{1} \\ \tilde{c}_{1} \tilde{c}_{1} \tilde{b}_{1} \tilde{b}_{1} \\ \tilde{c}_{1} \tilde{c}_{1} \tilde{b}_{1} \\ \tilde{c}_{1} \tilde{c}_{1} \tilde{b}_{1} \\ \tilde{c}_{1} \tilde{c}_{1} \tilde{b}_{1} \\ \tilde{c}_{1} \tilde{c}_{1} \\ \tilde{c}_{2} \tilde{c}_{2}, \tilde{c}_{2} \rightarrow \tilde{t}_{1} + Z \end{array}$	$\begin{array}{c} 0 \\ 2 \ e, \mu (SS) \\ 1 {-} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 2 \ e, \mu (Z) \\ 3 \ e, \mu (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 0-2 jets 2 b 1 b 2 b 1 b 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.7 20.7	5, 100-500 GeV 5, 430 GeV 10, 220 GeV 11, 220 GeV 12, 220 GeV 14, 150-440 GeV 15, 150-580 GeV 16, 200-640 GeV 17, 300-640 GeV 16, 300-660 GeV 17, 300-660 GeV 16, 520 GeV	ကရီ)-100 GeV ကရီ)-20 ကရီ) ကရီ)-50 GeV ကရီ)-00 GeV ကရီ)-100 eV ကရီ)-00 GeV ကရီ)-100 eV ကရီ)-00 GeV ကရီ)-00 GeV ကရီ)-00 GeV ကရီ)-100 GeV ကရီ)-100 GeV	ATLAS-CONF-2013-053 ATLAS-CONF-2013-007 1208-4305,1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-048 ATLAS-CONF-2013-053 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-025
direct	$\tilde{t}_{L,R}\tilde{t}_{L,R}, \tilde{t} \rightarrow \ell \tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu})$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{-}, \tilde{\chi}_{3}^{-} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu})$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{-} \rightarrow \tilde{t}_{1}\nu \tilde{\eta}_{1}\ell(\tilde{\nu}\nu), \ell \tilde{\nu}_{1}^{\dagger}\ell(\tilde{\nu}\nu)$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{-} \rightarrow W \tilde{\chi}_{1}^{0}Z' \tilde{\chi}_{2}^{0}$	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ	0 0 0 0	Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7	7 85-315 GeV X1 125-450 GeV X2 100-330 GeV X2 100-330 GeV X2 125-450 GeV 100-330 GeV X2 125-450 GeV	$\begin{split} m(\tilde{t}_{1}^{2}) &= O GeV \ m(\tilde{t}_{1}^{2}) &= O S(m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) &= O GeV \ m(\tilde{t}_{1}^{2}) &= O S(m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1}^{2}) &= m(\tilde{t}_{1}^{2}) \\ m(\tilde{t}_{1$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035

Maga limit

Subject of growing interest: R-Parity violation (RPV)

- Drop the assumption of R-Parity conservation, allow (some of) the terms we encountered earlier
- proton stabilized in other ways (no fundamental problems)

$$W_{RPV} = \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k + \kappa_i L_i H_d$$

Consequences of R-Parity violation

- The LSP no longer needs to be stable and neutral
- → lose dark matter candidate
- SUSY particles can decay into standard model particles
- \rightarrow could escape traditional, E_T^{Miss} based searches

One promising search channel: Multileptons

$$W_{RPV} = \lambda_{ijk} L_i L_j \bar{E}_k + \dots$$

- λ_{ijk} terms: L-violating slepton-lepton-neutrino vertex
- \rightarrow allow for the LSP to decay into leptons and neutrinos!
- example: $\lambda_{121} > 0: \chi_1^0 \rightarrow e^+ \mu^- \nu_e$
- lower E_T^{miss} compared to 'conventional' SUSY scenarios, as LSP decays produce visible particles, but at least 4 leptons

$$\underbrace{\tilde{\chi}_{1}^{0}}_{\tilde{\nu}_{e}^{*}(\tilde{\tilde{\nu}}_{\mu}^{*})} \underbrace{\tilde{\nu}_{e}^{*}(\tilde{\tilde{\nu}}_{\mu}^{*})}_{\lambda_{121}} \underbrace{\mu^{-}(e^{-})}_{\mu^{-}(e^{-})}$$

Study Simplified RPV models

- → simplified: only 2 SUSY particles contribute
- Bino-like neutralino ($\tilde{\chi}_1^0$) LSP
- One next-to-lightest SUSY particle (NLSP) (several choices)
- all other sparticles decoupled to very high masses (4.5 TeV)
- Choose a **single** λ_{ijk} parameter to be non zero
- \rightarrow study $\lambda_{121}, \lambda_{122}, \lambda_{133}, \lambda_{233}$ as representative sample
- expect at least 4 leptons + E^{miss}_T

The ATLAS detector

- High Luminosity, multi purpose detector at the Large Hadron Collider in Geneva
- Record p-p-collisions at $\sqrt{s} = 7(2011)/8(2012)$ TeV
- Total dataset: 4.7fb⁻¹ (2011) / 20.4fb⁻¹ (2012)

The ATLAS detector

High Luminosity, multi purpose detector at the Large Hadron Collider in Geneva
 Record p-p-collisions at √s = 7(2011)/8(2012) TeV

Max Goblirsch (Ringberg 2013)

Multilepton RPV SUSY

Which Standard Model processes do we need to consider as backgrounds?

ightarrow separate based on number of **prompt** (from the primary interaction) leptons

4 prompt leptons

- Di- and Triboson production (ZZ, WWZ)
- Higgs decays ($H \rightarrow 4\ell$, $ZH \rightarrow WWZ \rightarrow 4\ell 2\nu$
- Estimate contributions using Monte-Carlo simulation

fewer than 4 prompt leptons

- Z+jets (secondary leptons from jets)
- Top quark pairs (secondary leptons from $b \rightarrow c\ell\nu$)
- Di/Triboson processes (WW,WZ,WWW)
- Estimate contributions using data-driven techniques

Challenge: Suppress background as much as possible while avoiding rejection of signal events

Main requirement:

- At least 4 isolated leptons
- → isolated leptons: not surrounded by further activity (jets)
- \rightarrow effect: separate prompt from secondary leptons

hadronic tau decays

- 7 out of 9 possible λ_{ijk} indices contain third generation (i/j/k = 3) indices
- to be sensitive, need to take tau lepton decays into account
- ightarrow allow a hadronic tau decay ($au
 ightarrow W^*
 u$; $W^*
 ightarrow$ hadrons) to replace one lepton
- challenging separation from jets multivariate techniques
- \rightarrow 2 event categories: 4 ℓ , $3\ell 1\tau$ ($\ell = e, \mu$)

FV decays of a χ_1 LOF via a non-zero λ_{ijk} parame									
		<i>ij</i> = 12	<i>ij</i> = 13	ij = 23					
	<i>k</i> = 1	$ee u/e\mu u$	$ee\nu/e au\nu$	$e\mu u/e au u$					
	<i>k</i> = 2	$e\mu u/\mu\mu u$	$e\mu u/\mu au u$	$\mu\mu u/\mu au u$					
	k = 3	$e \tau \nu / \mu \tau \nu$	$\mathbf{e} \tau \nu / \tau \tau \nu$	$\mu \tau \nu / \tau \tau \nu$					

RPV decays of a $\tilde{\chi}_1^0$ LSP via a non-zero λ_{ijk} parameter.

Veto of Z bosons

- Many backgrounds contain lepton pairs from $Z \rightarrow \ell \ell$ decays
- Apply a **Z veto**: Reject events containing a lepton pair with invariant mass within 10 GeV of the Z resonance
- no significant effect on signal, powerful suppression of background

Final selection

- Use properties of SUSY events
- \rightarrow neutrinos from LSP decay: moderate E_T^{Miss}
- \rightarrow cascade activity: many high momentum objects
- useful quantity: effective mass $m_{eff} = \sum_{leptons} |\vec{p_T}| + \sum_{jets} |\vec{p_T}| + E_T^{Miss}$
- require E_T^{Miss} or m_{eff} to pass a certain threshold
- $\rightarrow\,$ almost complete suppression of standard model processes, high efficiency on signal

Results

 $4\ell 0\tau$ event category:

- main surviving background: 4 prompt leptons
- very low background expectation expect 1.6 SM events
- observe 1 event in agreement with SM

Results

$3\ell 1\tau$ event category:

- events with non-prompt leptons become important background
- \rightarrow jets misidentified as hadronic taus
 - overall background level again very low (2 events)
 - observe 4 events
 - well within uncertainty of the background estimation ($p_0 = 0.13$)

2012 Exclusion Limits - examples

- No excess over SM observed, place upper limits on possible signal
- exclusion plot: region excluded within the model at 95%CL
- ightarrow area to the left of the red band is **excluded**
- for $\lambda_{121} > 0$: strongest exclusion.
- \rightarrow Only e, μ in final states, high acceptance and efficiency

2012 Exclusion Limits - examples

- for $\lambda_{133} > 0$: weaker limits
- tau decays in all possible final states
- \rightarrow more challenging, reduced selection efficiency

- Conventional RPC SUSY searches at the LHC observe no deviation from the SM
- Non-observation is starting to exclude the most popular models
- Searches have been extended into the realm of R-Parity violation
- and again, no signs of SUSY
- Are we done until 2015?

One more loophole!

- So far, we considered the case where λ is of a sufficient magnitude for prompt LSP decays
- → what happens when we go to lower values?

study finite LSP lifetimes

- main concept: finite lifetime →decay vertex is spatially displaced from the interaction point
- How far does the sensitivity of the 4-lepton search reach?
- $\rightarrow\,$ requirements that reject displaced leptons from b decays and cosmic muons will then reject signal
- If our sensitivity runs out, can we complement it somehow?
- what is our maximum reach?

Preliminary study

- Simulate LSP lifetimes from 0.001 to 10000 ps
- study acceptance of the 4I analysis
- also study acceptance of a potential complementary analysis
- ightarrow displaced lepton pairs: look for two leptons coming from a displaced vertex

- 4 leptons lose sensitivity at 1 ps
- displaced lepton pairs become sensitive above 20 ps
- total reach: up to 10⁴ps LSPs start to decay outside the tracking volume

- SUSY is a hot topic for LHC searches
- \rightarrow possible solution to the **Hierarchy problem**
- \rightarrow most natural models (low fine tuning) expect masses in the TeV range or below
- Recent searches have set strong limits on conventional, R-Parity conserving SUSY
- ightarrow already straining the boundaries of natural SUSY
- Extend scope of searches R-Parity violation
- → New signatures, including Multilepton events
- $\rightarrow\,$ could have been missed by conventional searches
- Next step Long lived signatures
- ightarrow can be caused by a weak RPV coupling
- ightarrow could have been missed by **all** previous ATLAS analyses \dots
- \rightarrow SUSY could still be hiding in plain sight