Planar pixel sensors for the ATLAS upgrades at HL-LHC

Stefano Terzo

L. Andricek, A. Macchiolo, H.-G. Moser, R. Nisius, R.-H. Richter and P. Weigell

Max-Planck-Institut für Physik & Max-Planck-Institut Halbleiterlabor München

> Young Scientist Workshop Ringberg Castle 23th July 2013

The silicon pixel tracker

The pixel tracker challenge

 \rightarrow True 2D spatial information

 Readout chip coupling (bump bonding)

The present ATLAS pixels

- 1744 modules
- ► 46080 pixel channels per module: 50 µm × 400 µm
- n-in-n silicon sensors: 250µm thick
- FE-I3 readout chip
 - lowest threshold: $\sim 3000 \, \mathrm{e}^-$
 - radiation hard up to $2 \times 10^{15} n_{eq}/cm^2$

The inner tracker upgrade plan

The inner tracker upgrade plan

The inner tracker upgrade plan

z (m)

IBL and inner layers of Phase II

Advantages:

- better tracking precision, vertexing and b-tagging performance
- larger area covered along the beam line
- redundancy in the measurement of tracks Problems:
- ▶ pileup → reduced occupancy now: FE-I3 chip $400 \times 50 \mu m^2$

IBL: FE-I4 chip $250 \times 50 \mu m^2$

Ph. II: new chip $150 \times 25 \mu m^2$

- ▶ radiation damage now: $\Phi_{eq} \sim 2 \times 10^{12} n_{eq}/cm^2$ IBL: $\Phi_{eq} \sim 5 \times 10^{15} n_{eq}/cm^2$ Ph. II: $\Phi_{eq} \sim 2 \times 10^{16} n_{eq}/cm^2$
- dead area

 \rightarrow smaller overlapping space

Our module concept for phase II

 the present ATLAS module design

- active edges: maximize the active area of the sensor
- 195 µm Read-out chip Bump-balls 250 µm n+ dinactive Sensor n-substrate Guard-rings нv Planar junctions Sin SiO2 Saw Dead Depleted Depleted cut Active Edge region region zone Pe
- InterChip Vias (ICV): bring the signal directly to the backside passing through the chip

Planar active edge sensors

- present IBL design:
 - n-in-n sensor with 200 µm edge (pixel shifted under the guard rings)
- Phase II alternatives:
 - n-in-p sensor with 125 µm active edge (only one Bias Ring)
 - ▶ n-in-p sensor with 50 µm active edge (Floating Guard Ring)

Hit efficiency for edge pixels

FE-I3 50 μm active edge

FE-I3 125 μm slim edge

VTT n-in-p thin pixel sensors with active edges

Radiation damage in silicon detectors

Radiation damage in silicon detectors

Displacement of lattice atoms (crystal damage)

Si lattice

recombination centers affect doping concentration generation centers increase of depletion voltage noise increase trapping centers mean free path reduced decrease of charge collection efficiency

VTT n-in-p thin pixel sensors with active edges

New thin n-in-p silicon pixel prototypes

Our thin silicon detectors

- ▶ from 200 µm to 75 µm thinned sensors
 - \rightarrow lower trapping probability
 - ightarrow lower depletion voltage ($V_{
 m dep} \sim d^2$)
 - \rightarrow less multiple scattering

Iower signals \rightarrow new FE-I4 readout chip that allows lower thresholds

VTT n-in-p thin pixel sensors with active edges

New thin n-in-p silicon pixel prototypes

Characterization setup in laboratory

- ⁹⁰Sr beta source
- external trigger via scintillator
- full setup cooled in a climate chamber from 20°C to -50°C

VTT n-in-p thin pixel sensors with active edges

New thin n-in-p silicon pixel prototypes

Charge Collection: thickness comparison

VTT n-in-p thin pixel sensors with active edges

New thin n-in-p silicon pixel prototypes

FE-I4 150 μm thick: hit efficiency

Young Scientist Workshop 21rd - 26th July 2013

VTT n-in-p thin pixel sensors with active edges

New thin n-in-p silicon pixel prototypes

Hit efficiency at different η incidence

- $\blacktriangleright\,$ FE-I4 150 μm thick sensor, irradiated to $4{\times}10^{15} n_{eq}/cm^2$
- threshold: 1.6 ke

VTT n-in-p thin pixel sensors with active edges

New thin n-in-p silicon pixel prototypes

Hit efficiency at different η incidence

- FE-I4 150 µm thick sensor, irradiated to 4×10¹⁵n_{eq}/cm²
 threshold: 1.6 ke
- 10098 97.5 97 Full pixel cell 96.5 ----- Inner pixel cell region 96^{hmlmld} -10 0 10 20 30 40 50 60 70 80 90 Beam incidence [deg] 50 rack y [µm] 98.4% hit efficiency 40 30 at ϑ =30° ($\eta \sim$ 0.55) 20 10 (500 V)

VTT n-in-p thin pixel sensors with active edges

New thin n-in-p silicon pixel prototypes

Hit efficiency at different η incidence

▶ FE-I4 150 μm thick sensor, irradiated to $4 \times 10^{15} n_{eq}/cm^2$ ▶ threshold: 1.6 ke

VTT n-in-p thin pixel sensors with active edges

New thin n-in-p silicon pixel prototypes

Hit efficiency at different η incidence

▶ FE-I4 150 μm thick sensor, irradiated to $4 \times 10^{15} n_{eq}/cm^2$ ▶ threshold: 1.6 ke

fficiency [%

VTT n-in-p thin pixel sensors with active edges

New thin n-in-p silicon pixel prototypes

High-eta cluster properties

FE-I4 150 μm thick sensor, irradiated to $4 \times 10^{15} n_{eq}/cm^2$ (ϑ =85°)

- long clusters \rightarrow higher occupancy
- threshold and under depletion effects

Conclusions and outlook

- Thin active edge sensors before irradiation have high efficiency even outside the pixel area
 - this allows the design of a fully active pixel detector without module overlap that can be placed closer to the beam-pipe
- ► Thin sensors (100 µm and 150 µm) show very good performance up to 4×10¹⁵n_{eq}/cm² and are suited for the internal or intermediate layers of the Phase II upgrade

What's next:

- Further irradiations of the thin sensors up to $2 \times 10^{16} n_{eq}/cm^2$ with neutrons and protons.
- More studies of the active edge sensors after irradiation.

Conclusions and outlook

Backup slides

What a silicon detector is

- A pure intrinsic semiconductor has equal electron and hole densities
 - Transferred energy:
 - $\rightarrow\,$ electron exited from the valence to the conduction band
 - \rightarrow MIP: $\sim 8000 \, \text{e}^-$ -h pairs $\times 100 \, \mu \text{m}$
- Doping → introduce impurities in the Si lattice:

n-type:

- \rightarrow free electrons
- → Fermi level near the Conduction Band

p-type:

- \rightarrow free holes (electron vacancies)
- \rightarrow Fermi level near the Valence Band

What a silicon detector is

- A pure intrinsic semiconductor has equal electron and hole densities
 - Transferred energy:
 - $\rightarrow\,$ electron exited from the valence to the conduction band
 - \rightarrow MIP: $\sim 8000 \, \text{e}^-$ -h pairs $\times 100 \, \mu \text{m}$
- Doping → introduce impurities in the Si lattice:

n-type:

- \rightarrow free electrons
- → Fermi level near the Conduction Band

p-type:

- \rightarrow free holes (electron vacancies)
- \rightarrow Fermi level near the Valence Band

What a silicon detector is

- A pure intrinsic semiconductor has equal electron and hole densities
 - Transferred energy:
 - $\rightarrow\,$ electron exited from the valence to the conduction band
 - \rightarrow MIP: $\sim 8000 \, \text{e}^-$ -h pairs $\times 100 \, \mu \text{m}$
- ▶ Doping → introduce impurities in the Si lattice:

n-type:

- \rightarrow free electrons
- → Fermi level near the Conduction Band

p-type:

- \rightarrow free holes (electron vacancies) —
- \rightarrow Fermi level near the Valence Band

Reversed bias p-n junction

p-n junction:

- ightarrow there must be a single Fermi level
- \rightarrow band structure deformation
- ightarrow potential difference in the junction
- ightarrow charge flows until the equilibrium

- ightarrow increase of the depletion zone
- → depleted zone = sensitive volume
- $ightarrow V_B > V_{dep}
 ightarrow maximum collected charge$

Reversed bias p-n junction

p-n junction:

- \rightarrow there must be a single Fermi level
- → band structure deformation
- \rightarrow potential difference in the junction
- ightarrow charge flows until the equilibrium

- ightarrow increase of the depletion zone
- → depleted zone = sensitive volume
- $ightarrow V_B > V_{dep}
 ightarrow maximum collected charge$

Reversed bias p-n junction

p-n junction:

- \rightarrow there must be a single Fermi level
- → band structure deformation
- \rightarrow potential difference in the junction
- ightarrow charge flows until the equilibrium

- ightarrow increase of the depletion zone
- → depleted zone = sensitive volume
- $\rightarrow V_B > V_{dep} \rightarrow maximum collected charge$

Reversed bias p-n junction

p-n junction:

- \rightarrow there must be a single Fermi level
- → band structure deformation
- \rightarrow potential difference in the junction
- ightarrow charge flows until the equilibrium

- ightarrow increase of the depletion zone
- → depleted zone = sensitive volume
- $\rightarrow V_B > V_{dep} \rightarrow maximum collected charge$

Reversed bias p-n junction

p-n junction:

- \rightarrow there must be a single Fermi level
- \rightarrow band structure deformation
- \rightarrow potential difference in the junction
- ightarrow charge flows until the equilibrium

- \rightarrow increase of the depletion zone
- → depleted zone = sensitive volume
- $ightarrow V_B > V_{dep}
 ightarrow maximum collected charge$

Reversed bias p-n junction

p-n junction:

- \rightarrow there must be a single Fermi level
- \rightarrow band structure deformation
- \rightarrow potential difference in the junction
- ightarrow charge flows until the equilibrium

- \rightarrow increase of the depletion zone
- → depleted zone = sensitive volume
- $ightarrow V_B > V_{dep}
 ightarrow$ maximum collected charge

Reversed bias p-n junction

p-n junction:

- \rightarrow there must be a single Fermi level
- \rightarrow band structure deformation
- \rightarrow potential difference in the junction
- ightarrow charge flows until the equilibrium

- \rightarrow increase of the depletion zone
- → depleted zone = sensitive volume
- $ightarrow V_B > V_{dep}
 ightarrow$ maximum collected charge

