MY FAVOURITE INTRODUCTIONS TO ADS / CFT

Stephan Steinfurt

Max-Planck-Institute for Physics
IMPRS Young Scientist Workshop at Ringberg Castle 2013/7/22

GREATEST EQUATION EVER? EULER'S EQUATION

Leonhard Euler

- fundamental constants
- basic operations

GREATEST EQUATION EVER? MALDACENA'S EQUATION

Joseph Polchinski

AdS $=$ CFT

- Maxwell's eq., non-abelian
- Dirac, Klein-Gordon equations
- QM, QFT, GR
- SUSY, Strings, extra dimensions

MY GOALS

- Give an introduction to many of the ideas connected to AdS / CFT without going into too much detail.
- Avoid very concrete examples like (really learn it!)

$S U(N) \mathcal{N}=4$ Super-Yang-Mills theory
$=$ Type IIB Superstring theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$
- Vary the degree of difficulty.

LARGE NTHEORIES (I) ('t Hooft 1974)

Let us talk about a SU(N) gauge theory. This is a theory similar to QCD (which has $\mathrm{N}=3$). It has gluons (instead of photons in QED), which interact with each other:

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{4}\left(F_{\mu \nu}^{a}\right)^{2} \\
& \sim \frac{1}{g^{2}}(\partial A)^{2}+\frac{1}{g^{2}}(\partial A)[A, A]+\frac{1}{g^{2}}[A, A][A, A]
\end{aligned}
$$

Feynman rules:

propagator: $\sim g^{2} \quad$ both vertices: $\sim \frac{1}{g^{2}}$

LARGE NTHEORIES (2)

We can now define a new coupling constant (yes, we can!):

$$
\lambda=g^{2} N
$$

In terms of this each propagator (E) gets $\frac{\lambda}{N}$ and each vertex (V) gets $\frac{N}{\lambda}$. Furthermore, loops (F) get N. So each Feynman diagram comes with a factor of

$$
V-E+F
$$

$$
\begin{gathered}
N^{V-E+F} \lambda^{E-V} \\
= \\
N^{2-2 g} \lambda^{E-V}
\end{gathered}
$$

$$
=2-2 g
$$

In the limit $N \rightarrow \infty$ the diagrams are ordered wrt N.

LARGE NTHEORIES (3)

Let's do a bit of this counting. A propagator can be written in double-line notation:

marumor

Then the dominant (planar) diagrams look like this:

A subdominant one (non-planar) is

LARGE NTHEORIES (4)

This is exactly the way, diagrams in perturbative string theory are ordered. It is according to topology:

Gluons have charge and anticharge; glueballs can be seen as closed strings:

LARGE NTHEORIES (5)

Could a large N expansion be good for $\mathrm{QCD}(\mathrm{N}=3)$?
A priori this should not be discarded. Actually, the QED fine structure constant is (Witten ~ 70s):

$$
\alpha=\frac{e^{2}}{4 \pi}=\frac{1}{137} \quad \Rightarrow \quad e \approx \frac{1}{3}
$$

Every large \mathbf{N} theory is basically a string theory on a different background.

However, the question which background is very difficult!

WEINBERG \& WITTEN THEOREM

Since some oscillation mode of the string describes the graviton, this basically means a graviton is made of gauge bosons.

$$
\operatorname{Tr}\left(A_{\mu} A_{\nu}\right) \quad " \Leftrightarrow " g_{\mu \nu}
$$

This seems to contradict the Weinberg \& Witten theorem from 1980. But it is actually evaded since gauge bosons and graviton live in spacetimes with different dimension!

HOLOGRAPHIC PRINCIPLE ('t Hooft '93, Susskind '94)

 Usually, in thermodynamics, the entropy scales with the volume of the observed system:$$
S \propto V
$$

Black holes behave differently. Their entropy scales with the area of the horizon (in Planck units):

$$
S=\frac{A}{4 G}
$$

This must be a general feature in a quantum theory of gravity.

Plato's allegory of the cave

-What is reality?

- How limited is our understanding?
- Chained prisoners can only see the shadows on and the echoes off the wall. They perceive this as real, not just as a reflection of true reality.
- In holography, both descriptions (the people and their shadows) are real and carry the same information!

NEWTON'S LAW (Duff, Liu 2000)

One may compute I-loop corrections to the graviton propagator.
Let us have photons, fermions and scalars run in the loop. For a particular theory ($\mathrm{N}=4 \mathrm{SYM}$) the correction then is:

$$
V(r)=\frac{G m M}{r}\left(1+\frac{2 N^{2} G}{3 \pi r^{2}}\right)
$$

gravity brane
Identical to the one in the Randall-Sundrum model for extra dimensions:
(where gravity is located)

RENORMALIZATION GROUP (I)

What could be the extra dimension? Hint: RG equations are local in scale:

$$
\mu \frac{\partial}{\partial \mu} g=\beta(g(\mu))
$$

Let's use a simplified case (conformal).

$$
\beta=0
$$ That's the CFT in AdS / CFT:

Such theories should be scale invariant, i.e. the following must be a symmetry.

$$
x^{\mu} \rightarrow \lambda x^{\mu}
$$

Let the extra dimension coordinate r scales like an energy.

$$
r \rightarrow \lambda^{-1} r
$$

RENORMALIZATION GROUP (2)

A Poincaré-invariant metric which also has this symmetry is:

$$
d s^{2}=\frac{r^{2}}{L^{2}} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+\frac{L^{2}}{r^{2}} d r^{2}
$$

That is the metric of AdS space (that's the ... in ...).

Kadanoff block spin transformation <=> AdS space

OUR CONFERENCE LOGO (Strydom 2013)

- large number of colours (large N)
- black hole in AdS space (holographic principle)

SUMMARY

- Greatest equation ever ?!
- Large N theories
- Weinberg \& Witten theorem
- Holographic Principle
- Plato's allegory of the cave
- Quantum corrections to Newton's law
- Renormalization group \& AdS / CFT

THANK YOU FOR LISTENING!

REFERENCES

I took pictures / explanations from the following sources:

- J. Polchinski: Introduction to Gauge / Gravity Duality
- J. McGreevy: Holographic duality with a view toward many-body physics
- J. Maldacena:The gauge string duality (Talk at Xth Quark Confinement and the Hadron Spectrum)
- J. Casalderrey-Solana et al.: Gauge / String Duality, Hot QCD and Heavy Ion Collisions
- I. Klebanov, J. Maldacena: Solving quantum field theories via curved spacetimes
- D. Tong: String Theory

