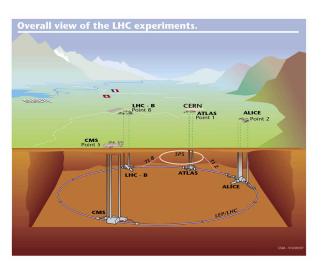
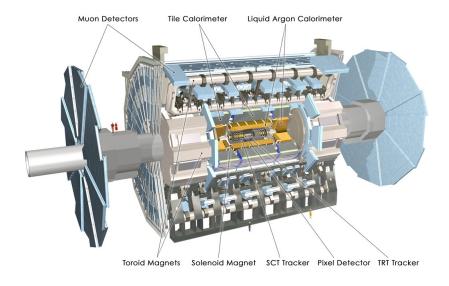
Optimization of the ATLAS Muon Detector Readout for high counting rates

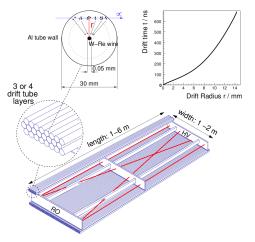
Sebastian Ott

July 21, 2013


Table of Contents

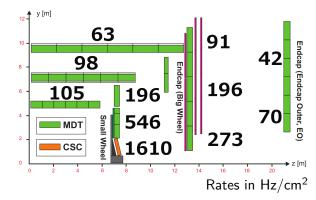

- ATLAS-Detector at the LHC
- 2 The ATLAS Muon Detector
- 3 Optimization of the Moun Detector
 - 4 Test of new electronics

LHC


- Proton-Proton collision at 7 - 8 TeV (2012)
- Aim of energy increase: 13 TeV (2015)
- Design luminosity: 10³⁴ cm⁻²s⁻¹ (2015)
- Luminosity increase to 7*10³⁴ cm⁻²s⁻¹ (2023)

ATLAS Monitored Drift Tube (MDT)-Chamber

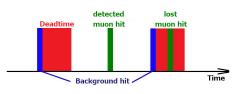
- Tube diameter 30 mm (currently mounted)
- Gasmixture Ar/CO₂ (93/7)
- Pressure: 3 bar
- Voltage: 3080 V
- Max. drifttime: 700 ns
- Nonlinear r-t-relation
- Background rate capability: 300 kHz/tube (500 Hz/cm²)

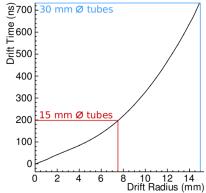


Upcoming Requirements

Background:

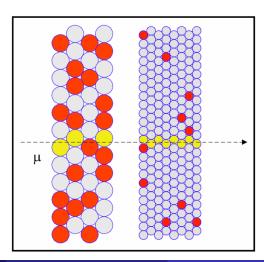
- Photons
- Neutrons

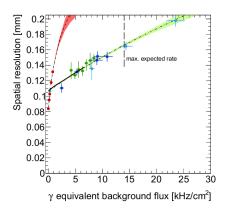

• Background \propto luminosity

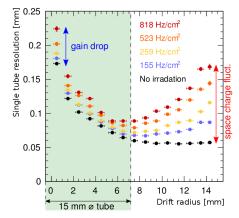


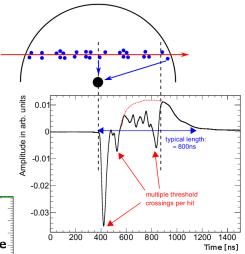
- Higher signal rates
- \Rightarrow In some regions the MDT-chambers will come to their limits

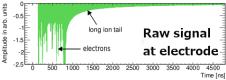
Reducing the diameter to 15 mm

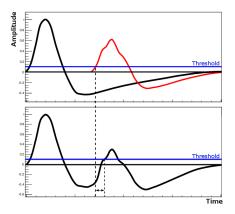

- Shorter max. drifttime
- \Rightarrow Deadtime can be reduced
- \Rightarrow Fewer masking effects


Reducing the diameter to 15 mm

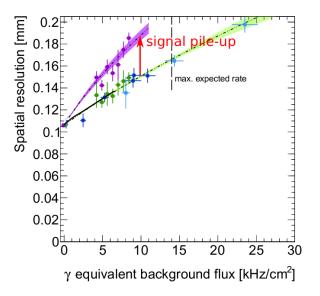

- More tubes per chamber
- $\Rightarrow \mathsf{Lower} \ \mathsf{occupancy}$

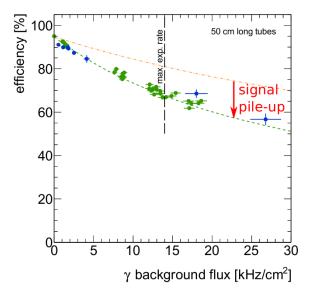

Reducing the diameter to 15 mm


- Less space charge fluctuations
- \Rightarrow Better resolution

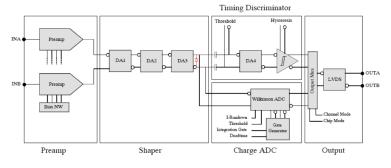


- e⁻-lon-pairs
- Fast e⁻ signal is interesting
- Multiple threshold crossings for one Muon possible




- Large undershot from bipolar shaping
- Shift of a second threshold crossing
- Even loss of second hit is possible
- Efficiency loss
- $\Rightarrow {\rm Still \ more \ potential \ in} \\ {\rm the \ sMDT}$

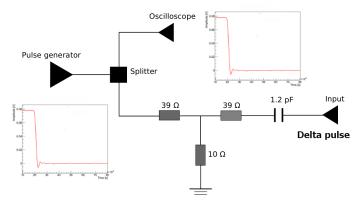
Signal Pile-Up



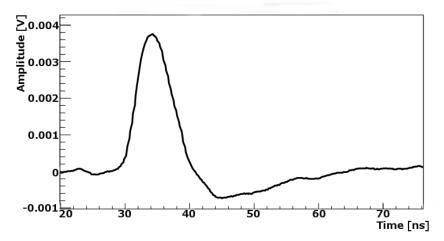
Signal Pile-Up

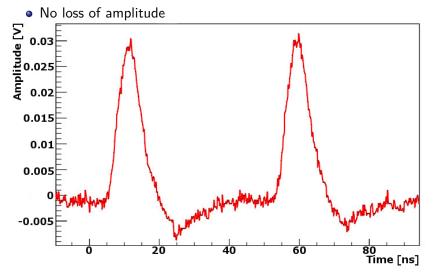
Base Line Restauration

- The aim is to get rid of the long signal tail
- \Rightarrow Negative signal part is unwanted
- Simplified idea: Insertion of a diode
- \Rightarrow Negative part is 'cut' off
- $\Rightarrow \mathsf{Lower} \; \mathsf{deadtime}$


Testsetting

- Testboard with BLR electronics
- Delta pulse




- Rectangular signal from pulse generator
- Feeding the input via capacitor
- \Rightarrow Delta pulse at the input of the electronic

- Only a small undershot
- Fast base line restauration

• No pile-up

Sebastian Ott

Optimization of the ATLAS Muon Detector R

- Signal pile-up lowers efficiency
- Shaping has to be improved
- Chip with BLR
 - Shows expected characteristic
 - Lowers deadtime
 - Shortens the undershot
- Test measurements on a chambers
- Development of a new adjusted chip

Thank you for your attention