The Role of Black Holes in the AdS/CFT Correspondence

Mario Flory

23.07.2013

Mario Flory

BHS IN ADS/CFT

1 / 30

Part I: General Relativity and Black Holes

- Einstein Field Equations
- Lightcones and causal structure
- Conformal diagrams

Einsteins Field Equations

Spacetime curvature \sim distribution of matter and energy

Einsteins Field Equations

$$G = T$$

Spacetime curvature \sim distribution of matter and energy

- G: Einstein tensor
- T: Energy-momentum tensor (a.k.a. stress energy tensor)

Einsteins Field Equations

$$G[g] = \frac{8\pi G_N}{c^4} T[\phi, \psi, A_\nu, \ldots]$$

Spacetime curvature \sim distribution of matter and energy

- G: Einstein tensor
- T: Energy-momentum tensor (a.k.a. stress energy tensor)

1

- g: Metric tensor
- $\phi, \psi, A_{\nu}, ...$: Matter content
- G_N : Newtons constant (often set = 1)
- c: Speed of light (often set = 1)

Lightcones and causal strucutre

There are three types of curves: *timelike* (e.g. observers, realistic spaceships), *lightlike or null* (light rays) and *spacelike* (tachyons, scifi spaceships).

At every point, there is a *lightcone* generated by the light rays going through this point.

6 / 30

Lightcones and causal strucutre

Fig.: Lightcones in flat space (Minkowski metric)

MARIO FLORY

BHS IN ADS/CFT

7 / 30

Lightcones and causal structure

Fig.: Lightcones in Gödel spacetime: Closed causal curves!

Lightcones and causal structure

Fig.: Schwarzschild Black Hole in Gullstrand-Painlevé coordinates

Lightcones and causal structure

Fig.: Black Hole in Gullstrand-Painlevé coordinates: Surface of no return = event horizon!

M.	ARIO	FLORY	

BHS IN ADS/CFT

10 / 30

Black Holes and Event Horizons

A region of spacetime from which no causal curve can escape outwards is called *black hole*.

Defining the precise meaning of "outward" is not as easy as it may sound.

The boundary of the black hole ("surface of no return") is called the *event horizon*, because one cannot see events happening behind it.

Black Holes and Event Horizons

Remember:

$$G[g] = T[\phi, \psi, A_{\nu}, \dots]$$

Spacetime curvature \sim distribution of matter and energy

Known exact solutions:

- Schwarzschild, Kerr: Vacuum, i.e. T = 0
- Reissner-Nordström, Kerr-Newman, Vaidya: Electro-Vacuum, i.e. $T = T[A_{\nu}]$

Conformal Diagrams

To understand the global structure of a (spherically symmetric) black hole, we often draw *conformal diagrams*:

- Due to spherical symmetry, ignore angular coordinates ⇒ diagram becomes two dimensional (time, radial direction).
- Use a coordinate system where lightcones are all upright and opened 90°.
- Compactify: Instead of coordinates like $x \in]-\infty, \infty[$ use e.g. $\tilde{x} = \operatorname{ArcTanh}[x], \tilde{x} \in]-1, 1[.$

You end up with a two-dimensional finite sized (i.e. drawable) diagram of the spacetime in which light rays are straight lines with slopes of $\pm 45^{\circ}$.

Conformal Diagrams: Flat Space

Fig.: Conformal diagram for flat (Minkowski) space

MARIO FLORY

BHS IN ADS/CFT

Conformal Diagrams: Asymptotically Flat Black Hole

Fig.: Conformal diagram for the Schwarzschild black hole

- A /			T -	
- 11/2	$-\Delta R$	10	н .	$\alpha R v$
		10		OILI

Conformal Diagrams: Asymptotically AdS Black Hole

Fig.: Conformal diagram for the asymptotically AdS black hole

MAI	NO 1	Flo	$\mathbf{R}\mathbf{Y}$

Part II: Properties of Black Holes

- No Hair theorem
- Entropy
- Temperature

No Hair Theorem

Kerr-Newman solution: The most general possible stationary asymptotically flat black hole solution with smooth event horizon in 3 + 1 dimensions.

And yet: Only dependent on *three* parameters:

- Mass M
- Angular momentum J
- Electric charge Q

Black holes seem to store relatively little information about their history, i.e. they "have no hair". This theorem can be circumvented in asymptotically AdS spaces.

Black Hole Entropy

Thought experiment:

What happens when you throw a body with large entropy into a black hole? Does entropy vanish, i.e. decrease on the global scale?

Solution:

Assign entropy to black hole.

Bekenstein-Hawking-Formula: $S_{BH} = \frac{A}{4G_N}$ with horizon area A. (Usually set $G_N = 1$)

Black Hole Temperature

If a black hole has energy E and entropy S depending on its parameters M, J and Q, then we expect quantities T, Ω, Φ to be well defined such that a first law of thermodynamics holds:

$$dE = TdS + \Omega dJ + \Phi dQ$$

T is the Hawking-Temperature $T = \frac{\kappa}{2\pi}$ with the surface gravity κ .

Due to quantum effects of matter, there is a thermal radiation associated with this temperature, the so called *Hawking radiation*. Due to this, black holes *evaporate*.

Thermodynamics of the Schwarzschild Black Hole

Schwarzschild's solution: $M \neq 0$ but Q = J = 0, $r_H = 2M$. $\Rightarrow E = M$, $A = 4\pi r_H^2$, $S = 4\pi M^2$

Infinetesimal change in *M*: $dE = dM \equiv TdS = T8\pi MdM$ $\Rightarrow T = \frac{1}{8\pi M}$

What you should learn:

- Heavy (i.e. large M) Schwarzschild black holes are large (r_H ~ M) and have much entropy S ~ M²,...
- ... but they are cooler ($T \sim M^{-1}$) and hence evaporate slower.
- These black holes have negative heat capacity.

Summary of Black Hole Properties

- Defined by event horizon (with radius r_H).
- Parameters M, J, Q.
- Entropy $S = \frac{A}{4G_N}$ with area A.
- Temperature $T = \frac{\kappa}{2\pi}$ with surface gravity κ .
- Three laws of black hole thermodynamics analogous to ordinary thermodynamics.

Part III: Black Holes in AdS/CFT

- Temperature
- Chemical Potential
- Entanglement and Temperature
- Thermalization

Temperature

- Step 1: Take AdS-Schwarzschild black hole (with metric g), and calculate the analytic continuation to *euclidean space* (g_E).
- Step 2: In order to avoid a *conical singularity* in g_E , the euclidean time τ has to be identified with $\tau \sim \tau + 2\pi\beta$ where $\beta = \frac{1}{T}$ and T is the Hawking temperature.
- Step 3: Evaluate the *euclidean (gravitational) action* $S_E[g_E]$ of this metric.
- Step 4: According to AdS/CFT: Z_{CFT,therm} ≡ Z_{grav} = e^{-S_E[g_E]} in the saddle point approximation.

Exampe Calculation: AdS₄ Schwarzschild Black Brane

 g_E only depends on parameters M (determining r_H) and AdS-scale L. Demanding the absence of conical singularities, we find the temperature $T = \frac{3r_H}{4\pi}$.

$$S_E[g_E] = \frac{-1}{\lambda} \int d^4 x \sqrt{g_E} \left(R[g_E] + \frac{6}{L^2} \right) + \text{boundary terms}$$
$$= -\frac{(4\pi)^3 L^2}{3^3 \lambda} V T^2$$

where V is the spatial volume of the CFT. We find the quantities:

Free Energy:
$$F = -T \ln \mathcal{Z} = TS_E[g_E] = -\frac{(4\pi)^3 L^2}{3^3 \lambda} VT^3$$

Entropy: $S = -\frac{\partial F}{\partial T} = \frac{(4\pi)^3 L^2}{3^2 \lambda} VT^2 = \frac{\mathcal{A}}{4G}$ as expected using $\lambda = 16\pi G_N$

Chemical Potential

- Step 1a: Take (charged) AdS-Reissner Nordström black hole (with metric g), and calculate the analytic continuation to *euclidean space* (g_E).
- Step 1b: The electromagnetic potential will have the form $A_{\nu} = A_0 \delta_{\nu}^0$ with near boundary expansion $A_0(z) = \mu + \dots \mu$ is identified as *chemical potential* and will be ralated to the charge Q of the black hole.
- Steps 2-4: Proceed as in uncharged case.

Different Approach to Temperature: Entanglement

Remember: AdS-Black hole has *two* conformal boundaries, i.e. is dual to *two* CFTs 1 and 2.

These two CFTs cannot communicate, but are entangled!

Different Approach to Temperature: Entanglement

The total Hilbertspace is $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$, and the combination of the CFTs 1 and 2 is in the (pure!) state

$$|\Psi\rangle = rac{1}{\sqrt{\mathcal{Z}(\beta)}} \sum_{n} e^{-\beta E_{n}/2} |E_{n}\rangle_{1} |E_{n}\rangle_{2}$$

with density matrix $ho_{
m tot} = \ket{\Psi}ra{\Psi}$. But the *reduced denisty matrix* of CFT 1

$$ho_1 = \mathsf{Tr}_2\left[
ho_{\mathsf{tot}}
ight] = rac{1}{\mathcal{Z}(eta)} e^{-eta H_1}$$

is the (mixed!) denisty matrix of a CFT at temperature $T = \frac{1}{\beta}$.

Thermalization

If a static black hole in the bulk corresponds to a CFT on the boundary with a certain temperature T, what does the *formation* of a black hole correspond to? Answer: *Thermalization*, i.e. approach of a system towards thermal equilibrium.

BHS IN ADS/CFT

29 / 30

Thanks a lot

