Study of hadronic showers with the fastRPC analog readout

Marco Szalay IMPRS - Ringberg YSW 2013

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Table Of Content

Introduction

- Linear Collider design concepts
- The physics program of a linear collider
- New generation of detectors

• The FastRPC setup

- Overview
- Implementation
- Data taking
- Time development of a hadronic shower

• Data Analysis

- Time of 1st Hit
- Charge distribution
- Radial distribution
- Comparison with T3B

Conclusions

Introduction: Linear Collider design concepts

- A lepton collider allows for precision measurements (clean events, well defined initial state)
 - in the TeV range to complement LHC
 - linear to prevent synchrotron radiation energy losses
- Two machine concepts:
 - ILC: superconductive accelerator technology ready to build
 - CLIC: two-beam accelerator for higher energies still in development

Introduction: Physics at e+/e- LC

- Precision measurement of the recently discovered (Higgs)
 boson
 - Model-independent measurements of coupling to fermions and bosons
 - Complete study of the Higgs sector

- Precision measurement of standard model particles
 - Top quark properties (mass, width, asymmetries)
 - Gauge bosons, coupling constants
- Direct and indirect search for possible BSM physics at TeV scale
 - particular strength in the weak sector, complementary to LHC

Introduction: Detectors

- We need beyond state-of-the-art detector systems, including more sensitive calorimeters
- Event reconstruction based on
 Particle Flow algorithms
 High granularity in the calorimeter
- Precise timestamping of all the subdetectors

 Use of tungsten as absorber for the hadron calorimeter of a Solenoid Magn multi-TeV collider to fit in the magnet barrel

Detectors - Particle Flow Algorithms

Detectors - Particle Flow Algorithms

Track finder algorithm reconstruct charged particles tracks

Detectors - Particle Flow Algorithms

PFA assign ECAL and HCAL hits to tracks

Detectors - Particle Flow Algorithms

PFA removes assigned hits from the list

Detectors - Particle Flow Algorithms

Remaining tracks are identified as photons or neutral hadrons

Detectors - Particle Flow Algorithms

Detectors - Hadronic Calorimetry

- Several concepts for the hadronic calorimeter:
 - Plastic scintillators with SiPMs and analog readout (AHCAL)

Detectors - Hadronic Calorimetry

- Several concepts for the hadronic calorimeter:
 - Plastic scintillators with SiPMs and analog readout (AHCAL)

- RPCs with digital readout (DHCAL)

Detectors - Hadronic Calorimetry

- Several concepts for the hadronic calorimeter:
 - Plastic scintillators with SiPMs and analog readout (AHCAL)

38-layer prototype with steel or tungsten absorber - RPCs with digital readout (DHCAL)

Detectors - Hadronic Calorimetry

- Several concepts for the hadronic calorimeter:
 - Plastic scintillators with SiPMs and analog readout (AHCAL)

38-layer prototype with steel or tungsten absorber

Detectors - Hadronic Calorimetry

- Several concepts for the hadronic calorimeter:
 - Plastic scintillators with SiPMs and analog readout (AHCAL)

38-layer prototype with steel or tungsten absorber - RPCs with digital readout (DHCAL)

Detectors - Hadronic Calorimetry

- Several concepts for the hadronic calorimeter:
 - Plastic scintillators with SiPMs and analog readout (AHCAL)

38-layer prototype with steel or tungsten absorber - RPCs with digital readout (DHCAL)

Almost 500000 channels in total: a record for a calorimeter system!

- RPCs with semidigital readout (SDHCAL)

Study of hadronic showers with the fastRPC analog readout

Overview

Goal of the experiment: measure the time structure of an hadronic shower using a high time-resolution analog readout

Mean square physicist

Understand the relevance of the time structure for Particle Flow Algorithms and background rejection

FastRPC Layer

Input for detector simulations

Implementation - Active layer

Resistive Plate Chamber

Implementation - Active layer

Study of hadronic showers with the fastRPC analog readout

Implementation - readout

$15 \times 3 \times 3 \text{ cm}^2 \text{ pads}$ Infineon BGA614 preamp at at a nitration USB spill info scintillator triggers **DHCAL** synchronization

4xPicoscope 6000 (16 channels in total) 8bit - 1.25GHz - 2.4µs sampling window

The FastRPC setup: Overview

Experimental setup in place at CERN PS facility

Tail catcher with RPC readout

FastRPC

Almost 500000 channels in total: a record for a calorimeter system!

electronics

WDHCAL

- Commissioning at PS hadrons & muons runs up to 10GeV
- Very good run with ~1.5Mio muon and ~16Mio hadron triggers
- Physics run at SPS hadrons & muons runs up to 180GeV
- ~3Mio muon and ~7Mio hadron triggers (luminosity limited by DHCAL trigger rate)

Development

Hadronic Showers: Time development

Time development

Time development

Time development

Hydrogen content in a gaseous detector is much lower than in plastic scintillators \rightarrow less sensitive to neutron elastic scattering

Study of hadronic showers with the fastRPC analog readout

Data Analysis: Calibration

Study of hadronic showers with the fastRPC analog readout

Data Analysis: Calibration Benchmark

Data Analysis: Calibration Benchmark

Data Analysis: Charge Distribution

Data Analysis: Charge Distribution

Data Analysis: Charge Distribution

Study of hadronic showers with the fastRPC analog readout

Data Analysis: Time of 1st Hit

Muons are instantaneous
Hadronic showers show
substantial late contribution

Data Analysis: Time of 1st Hit

Muons are instantaneous
Hadronic showers show substantial late contribution

Data Analysis: Time Resolution

Data Analysis: Time Resolution

$$A_1 \cdot \exp\left(-\frac{t}{\tau_1}\right) + A_2 \cdot \exp\left(-\frac{t}{\tau_2}\right) + A_3 \cdot \exp\left(-\frac{t}{\tau_3}\right) + c$$

$$A_1 \cdot \exp\left(-\frac{t}{\tau_1}\right) + A_2 \cdot \exp\left(-\frac{t}{\tau_2}\right) + A_3 \cdot \exp\left(-\frac{t}{\tau_3}\right) + c$$

 $A_1 = 3.8 \times 10^{-3}$ $\Box = 4.1$ ns

$$A_1 \cdot \exp\left(-\frac{t}{\tau_1}\right) + A_2 \cdot \exp\left(-\frac{t}{\tau_2}\right) + A_3 \cdot \exp\left(-\frac{t}{\tau_3}\right) + c$$

 $A_1 = 3.8 \times 10^{-3}$ $\Box = 4.1 \text{ ns}$ $A_2 = 1.4 \times 10^{-4}$ $\Box = 33 \text{ ns}$

$$A_1 \cdot \exp\left(-\frac{t}{\tau_1}\right) + A_2 \cdot \exp\left(-\frac{t}{\tau_2}\right) + A_3 \cdot \exp\left(-\frac{t}{\tau_3}\right) + c$$

$$A_1 = 3.8 \times 10^{-3}$$
 $\Box = 4.1 \text{ ns}$ $A_2 = 1.4 \times 10^{-4}$ $\Box = 33 \text{ ns}$ $A_3 = 1.8 \times 10^{-5}$ $\Box = 480 \text{ ns}$

Similar experiment T3B = same readout and absorber BUT plastic scintillators as active layer

Similar experiment T3B = same readout and absorber BUT plastic scintillators as active layer

RPC suppress intermediate components [10,50] ns from neutron elastic scattering

Study of hadronic showers with the fastRPC analog readout

Similar experiment T3B = same readout and absorber BUT plastic scintillators as active layer

Similar experiment T3B = same readout and absorber BUT plastic scintillators as active layer

RPC suppress intermediate components [10,100] ns from neutron elastic scattering

Study of hadronic showers with the fastRPC analog readout

Toward the outside of the shower, the late energy deposition component fraction gets bigger and bigger Center of the shower: Dominated by instantaneous contribution from relativistic particles, including muons and punch-through pions

Toward the outside of the shower, the late energy deposition component fraction gets bigger and bigger

3cm from center: still lot dominated by instantaneous components

6cm from center

fraction gets bigger and bigger

9cm from center

fraction gets bigger and bigger

12cm from center

late energy deposition component fraction gets bigger and bigger

15cm from center

21cm from center

Toward the outside of the shower, the late energy deposition component fraction gets bigger and bigger

fraction gets bigger and bigger

27cm from center

We can tune the radial extension of the shower by the choice of the time window → offers interesting possibilities for particle flow optimization and shower separation

Data Analysis: Radial Distribution - Mean ToFH

Data Analysis: Radial Distribution - Mean ToFH

Study of hadronic showers with the fastRPC analog readout

Conclusions

- Lepton colliders are a key tool to explore the Higgs sector and physics at the TeV scale
- Development of the FastRPC detector to study the time structure of hadronic showers in a tungsten HCAL
- Commissioning and data taking campaign at CERN PS and SPS facility for almost 5 weeks of beam time
- Data Analysis RPC are:
 - sensitive to late components of the showers, 3 time components from different underlying processes in the shower
 - comparison with plastic scintillators shows suppression of intermediate components from neutron elastic scattering on H nuclei

 This work has been internally peer reviewed by the CALICE collaboration and is now available as a Calice Analysis Note (CAN-043) at: https://twiki.cern.ch/twiki/pub/CALICE/CaliceAnalysisNotes/ CAN-043.pdf

Outlook

- Full event synchronization with the DHCAL
- Comparison with MC data

Backup

Backup: Physics processes LC

Study of hadronic showers with the fastRPC analog readout

Backup:

Streamers

Study of hadronic showers with the fastRPC analog readout

Backup: pedestal subtracted comparison

