

Possible application of SiMPI devices for particle tracking **Latest SiMPI simulation results** IMPRS Young Scientist Workshop Ringberg, 22th – 26th July 2013 **Stefan Petrovics** halbleiterlabor

Motivation for novel photon detectors

Low light level \rightarrow High Detection Efficiency Large detector area \rightarrow low costs & power consumption

Large number of detectors → low costs & power consumption Single tile readout → compact devices

mpi halbleiterlabo

2

Other requirements: fast timing & insensitivity to magnetic fields

Silicon Photomultiplier promising candidate

Silicon Photomultiplier

Conventional Silicon Photomultipliers (SiPMs):

- array of avalanche photodiodes operated in Geiger-mode
- read out in parallel \rightarrow signal is sum of all fired cells
- passive quenching by integrated polysilicon resistor

Polysilicon quench resistor:

- complex fabrication step
- limitation to fill factor

mpi nalbleiterlabo

mpi halbleiterlabor

mpi halbleiterlabor

4

mpi halbleiterlabor

SiMPl mpi halbleiterlabor photon high field Silicon MultiPixel light detector (SiMPI): p • Bulk integrated quench resistor n⁻ (formed by non-depleted bulk region) depleted gap region • Free entrance window for light nn vertical 'resistor' acts like a JFET non-depleted non-depleted region region anodes cathode n n⁺

Young Scientist Workshop, 24.7.2013

V_{bias}.

resistors

SiMPl

photon

4

Young Scientist Workshop, 24.7.2013

high field

Advantages:

- no need of polysilicon
- no metal necessary within the array \rightarrow free entrance window for light \rightarrow higher fill factor
- simple technology \rightarrow lower costs
- inherent diffusion barrier against minorities in the bulk \rightarrow less optical cross talk

mpi halbleiterlabo

Advantages:

- no need of polysilicon
- no metal necessary within the array \rightarrow free entrance window for light \rightarrow higher fill factor
- simple technology \rightarrow lower costs
- inherent diffusion barrier against minorities in the bulk \rightarrow less optical cross talk

Drawbacks:

- required depth for vertical resistors does not match wafer thickness
- wafer bonding is necessary for big pixel sizes
- significant changes of cell size requires bulk material adaption
- vertical 'resistor' is a JFET \rightarrow non-linear IV \rightarrow longer recovery times

albleiterlah

SiMPI Prototypes

+ + + mpi + halbleiterlabor

SiMPI Prototypes

+ + + mpi + halbleiterlabor

6

 Pitch: 90 -160 μm with different gap size

SiMPI Measurements

Characterization of devices: measurement of

- amplitude/charge spectra \rightarrow photon resolution, gain, cross talk, ...
- dark counts
- after-pulsing
- recovery time
- photoemission response
- Photon Detection Efficiency (PDE)

halbleiterlaboi

SiMPI Measurements

Characterization of devices: measurement of

- amplitude/charge spectra \rightarrow photon resolution, gain, cross talk, ...
- dark counts
- after-pulsing
- recovery time
- photoemission response
- Photon Detection Efficiency (PDE)

Young Scientist Workshop, 24.7.2013

Possible application of SiMPI devices for particle tracking – Petrovics Stefan

mpi halbleiterlaboi

hot-carrier luminescence:

SiMPI Measurements: Cross Talk

hot-carrier luminescence:

in an avalanche breakdown 10⁵ carriers emit in average 1 photon with E > 1.12 eV → trigger of neighbouring cells (fast & slow component) A. Lacaita et al, IEEE Trans. Elec. Dev., Vol. 4, 1993 mpi halbleiterlabo

SiMPI Measurements: Cross Talk

hot-carrier luminescence:

in an avalanche breakdown 10⁵ carriers emit in average 1 photon with E > 1.12 eV → trigger of neighbouring cells (fast & slow component) A. Lacaita et al, IEEE Trans. Elec. Dev., Vol. 4, 1993 mpi halbleiterlabo

SiMPI Measurements: Cross Talk

hot-carrier luminescence:

in an avalanche breakdown 10⁵ carriers emit in average 1 photon with E > 1.12 eV → trigger of neighbouring cells (fast & slow component) A. Lacaita et al, IEEE Trans. Elec. Dev., Vol. 4, 1993

→ influence on photon counting statistics due to additionally fired cells

Young Scientist Workshop, 24.7.2013

mpi halbleiterlabo

SiMPI Measurements: PDE

Photon Detection Efficiency (PDE):

Probability to detect incoming photons of certain wavelengths

- measured PDE for different wavelengths
- peak efficiency around $\lambda \approx 405$ nm

mpi halbleiterlabo

9

• sensitivity in the UV range observed

Measurement of the photoemission response of SiMPI devices in Geiger mode

Measurement of the photoemission response of SiMPI devices in Geiger mode

Measurement of the photoemission response of SiMPI devices in Geiger mode

Measurement of the photoemission response of SiMPI devices in Geiger mode

Particle Tracking

Particle tracking with SiMPI devices

- excellent time stamping due to fast avalanche (sub-ns)
- MIPs generate roughly 80 e-h-pairs/μm
- no need for high trigger efficiency

 \rightarrow allows operation at low overbias voltage \rightarrow decrease of dark counts & optical cross talk

• Topologically flat surface

mpi halbleiterlaboi

- High fill factor
- Pitch limited by bump bonding

Particle Tracking: First Measurements

mpi halbleiterlabor

Particle Tracking: First Measurements

halbleiterlabor

Young Scientist Workshop, 24.7.2013

Possible application of SiMPI devices for particle tracking – Petrovics Stefan 12

Particle Tracking: First Measurements

+ + mpi + halbleiterlabor

Young Scientist Workshop, 24.7.2013

Possible application of SiMPI devices for particle tracking – Petrovics Stefan 12

Particle Tracking: New Setup

Particle tracking setup concept: Need to measure particle detection efficiency for lower overbias

→ use telescope or laser (similar to microscope revolver) for alignment of Sr source to SiMPI device

mpi albleiterlabo

- → electron spot should be sufficiently small (< array/pixel size)</p>
- → technical difficulties in producing a small but deep hole of d ≈ 100µm (mechanical/laserdrilling not up to the task)
- → sufficient collimation leads to extremely low particle rate (≈10/s)
 (→ cooling)

mpi nalbleiterlabo

Possibilties in the simulations:

- variation of the photo resist and tilt angle
- tuning of annealing scenario (time, temperature, atmosphere)
- change of implantation dose and energy for E-field optimization

mpi nalbleiterlabo

mpi ⁺ halbleiterlabor

Impact on electrical field of the high field region

 peak of the electrical field on the edge of the high field region can cause edge breakdown

Impact on electrical field of the high field region

- peak of the electrical field on the edge of the high field region can cause edge breakdown
- inhomogeneous field in y-direction due to diffusions
- \rightarrow affected by various parameters (photo resist angle, tilt angle, annealing scenario)
- \rightarrow find optimum parameters for edge breakdown suppression and homogeneity of E_v

mpi halbleiterlabo

Electrical field and edge breakdown

- \rightarrow decrease the E-field peak \rightarrow reduce chance of edge breakdown
- \rightarrow Monte-Carlo simulations for determining the trigger efficiency for different parameters

mpi halbleiterlaboi

Electrical field and edge breakdown

- \rightarrow decrease the E-field peak \rightarrow reduce chance of edge breakdown
- \rightarrow Monte-Carlo simulations for determining the trigger efficiency for different parameters

→ probability of edge breakdown can be estimated
 → parameters can be optimized

Young Scientist Workshop, 24.7.2013

Possible application of SiMPI devices for particle tracking – Petrovics Stefan 18

mpi nalbleiterlabo

Recovery & Quenching: static simulations

rule of thumb: current limit for quenching @ $I_{max} = 20 \ \mu A$

- breakdown voltage @ 35V
- increase overbias
- obtain IV-curve, which should simulate the moment of the avalanche breakdown

Recovery & Quenching: static simulations

rule of thumb: current limit for acceptable cell recovery time @ I_{max} = 100 nA

- overbias voltage @ 40V
- decrease voltage of internal anode to breakdown
- obtain IV-curve, which should simulate the recovery process of the cell

+ + + mpi + halbleiterlabor

Recovery & Quenching: static simulations

Summary and Outlook

• New detector concept for SiPMs with quench resistors integrated into the silicon bulk

- no polysilicon resistors, no contacts necessary at the entrance window
- geometrical fill factor is given by the need of cross talk suppression only
- very simple process
- Prototype production
 - first results very promising \rightarrow quenching works
 - problems encountered \rightarrow optimization necessary
- Technology & Device Simulations
 - tackling of various problems (e.g. edge breakdown)
 - simulation of new production, including small pixels

→ New production to reduce dark counts and implement small pixels
→ Further investigation in particle tracking application

- new measurement setup
- investigation of radiation hardness
- test of new electronics
- test beam measurements

bleiterlab

The End

Thank You For Your Attention!

Young Scientist Workshop, 24.7.2013

mpi halbleiterlabor

electron density @ 40V bias voltage

mpi halbleiterlabor

Young Scientist Workshop, 24.7.2013

Possible application of SiMPI devices for particle tracking – Petrovics Stefan 24

Light-tight climate chamber

mpi halbleiterlaboi

due to non-optimized process sequence ~10MHz/mm² @300K for 4V overbias

albleiterlabo

halbleiterlabor

mpi halbleiterlabor

- Increasing overbias
 - ~ increasing gain
 - ~ increasing trigger efficiency

mpi halbleiterlabor

• Non-linear dependency on overbias

Distribution of time difference between two neighboring cells:

1: without optical crosstalk suppression

2: suppression by optical barrier

3: suppression by optical barrier and second *pn*-junction

Young Scientist Workshop, 24.7.2013

Possible application of SiMPI devices for particle tracking – Petrovics Stefan 32

Bulk photoelectron High field region

photon

Distribution of time difference between two neighboring cells:

1: without optical crosstalk suppression

2: suppression by optical barrier

3: suppression by optical barrier and second *pn*-junction

mpi halbleiterlaboi

Young Scientist Workshop, 24.7.2013

Possible application of SiMPI devices for particle tracking – Petrovics Stefan 32

mpi Mhalbleiterlabor

Young Scientist Workshop, 24.7.2013

Possible application of SiMPI devices for particle tracking – Petrovics Stefan 32

