

MPP Colloquium 17 September 2013

B-Physics Results from the ATLAS Experiment

Pavel Řezníček Excellence Cluster Univers, LMU Munich

Outline

- ATLAS experiment at the Large Hadron Collider
- Physics of B-hadrons at ATLAS
- B-physics trigger
- CP violation in the $B_s \to J/\psi \varphi$ decay
- Angular analysis of rare $B_d \rightarrow K^* \mu \mu$ decay
- Limit on very rare $B_s \rightarrow \mu\mu$ branching ratio
- Rare/new B-hadrons observations
- Angular analysis of $\Lambda_b \rightarrow \Lambda \mu \mu$ decay
- B-production x-sections measurements
- Summary

Large Hadron Collider

- Design parameters: $\sqrt{s} = 7+7$ TeV, L = 10^{34} cm⁻²s⁻¹, ~23 pp interactions per bunch crossing
- Achieved in 2011: $\sqrt{s} = 7 \text{ TeV}$, $L_{max} \sim 3.5 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$, ~12 pp interactions per bunch crossing
- Achieved in 2012: $\sqrt{s} = 8 \text{ TeV}$, $L_{max} \sim 7.7 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$, ~24 pp interactions per bunch crossing

The ATLAS Detector

44m

ATLAS B-Physics Program

- Two ways to search for physics beyond Standard Model: direct (resonances observation) or indirect through anomalies in known decays
- ATLAS B-physics focused on the beyond-SM effects in the B-hadron decays
- Analyses thus include precision measurements and rare processes in decays that can be fully reconstructed by the detector (all final state particles are charged):
 - quarkonia production
 - b-production x-section
 - rare decays $B_s \to \mu \mu$ and $b \to s \mu \mu$
 - angular, lifetime and mass measurements: $B_s \rightarrow J/\psi \phi$, $\Lambda_b \rightarrow \Lambda \mu \mu$
 - observation of rare/new b-hadrons: B_c , χ_b
- Despite ~0.5x10⁹ B⁰-pairs expected in 2011 data, all ATLAS B-physics measurements are statistically limited (room for improvemet with 2012 data and beyond)

B-Physics Trigger

- Based on di-muon signature (e/ γ or hadronic B-decays lost in background)
- Whole trigger chain 3-level based:
 - L1 HW based, fast muon detectors, di-muons with $p_T > 4$ GeV
 - L2/EF SW based, precise confirmation of the muons by Inner Detector tracks reconstruction, di-muon vertex construction (inv. mass cut), eventuall search for other

Performance of the ATLAS Detector

- Good impact parameter (reconstructed tracks deviation from real vertex in the transverse plane) resolution needed for good secondary B-hadron decay vertex separation
 - proper decay time resolution ~ 0.1 ps, typical B-hadron lifetime 1.5 ps
- Excellent mass resolution for good S/B performance
- No K/ π separation ability \rightarrow higher combinatorial background

CP violation in the $B_s \rightarrow J/\psi\phi$ decay (extraction of $\Delta\Gamma_s$ and ϕ_s)

CP Violation in B_s \rightarrow J/\psi\phi Decay

• CP violation in $B_s \rightarrow J/\psi \phi$ occurs through the interference in mixing and decay //

- Time evolution of flavour tagged $B_s \to J/\psi \phi$ very sensitive to New physics
- 9 physics parameters to describe $B_s \rightarrow J/\psi \phi$ decay

$B_s \rightarrow J/\psi \phi$ Decay Rate

 Experimental challenges: J/ψφ not pure CP eigenstate → statistical separation, good vertex resolution for time information, S/B ratio without K/π identification, initial B-flavour charge tagging

k	$\mathscr{O}^{(k)}(t)$	$g^{(k)}(oldsymbol{ heta}_T,oldsymbol{\psi}_T,oldsymbol{\phi}_T)$			
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$			
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t}+(1-\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t}\right]\pm 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$			
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T\sin^2\theta_T$			
4	$\frac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel}$	$-\frac{1}{\sqrt{2}}\sin 2\psi_T\sin^2\theta_T\sin 2\phi_T$			
	$\left[\left(1 + \cos \phi_s\right) e^{-\Gamma_{\rm L}^{(s)}t} + \left(1 - \cos \phi_s\right) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s \right]$				
5	$ A_{ }(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos(\delta_{\perp} - \delta_{ })\sin\phi_{s}$	$\sin^2\psi_T\sin2\theta_T\sin\phi_T$			
	$\pm e^{-\Gamma_s t} (\sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m_s t) - \cos(\delta_{\perp} - \delta_{\parallel}) \cos\phi_s \sin(\Delta m_s t))]$				
6	$ A_0(0) A_{\perp}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T\sin 2\theta_T\cos\phi_T$			
	$\pm e^{-\Gamma_s t} (\sin \delta_{\perp} \cos(\Delta m_s t) - \cos \delta_{\perp} \cos \phi_s \sin(\Delta m_s t))$	· -			
7	$\frac{1}{2} A_{S}(0) ^{2}\left[\left(1-\cos\phi_{s}\right)e^{-\Gamma_{L}^{(s)}t}+\left(1+\cos\phi_{s}\right)e^{-\Gamma_{H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{2}{3}\left(1-\sin\theta_T\cos^2\phi_T\right)$			
8	$ A_{S} A_{\parallel}(0) [\frac{1}{2}(e^{-\Gamma_{\rm L}^{(s)}t} - e^{-\Gamma_{\rm H}^{(s)}t})\sin(\delta_{\parallel} - \delta_{S})\sin\phi_{s}]$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$			
	$\pm e^{-\Gamma_s t} \left(\cos(\delta_{\parallel} - \delta_S)\cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S)\cos\phi_s\sin(\Delta m_s t)\right)$	5			
9	$rac{1}{2} A_S A_{\perp}(0) \sin(\delta_{\perp}-\delta_S) $	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin2\theta_T\cos\phi_T$			
	$\left[\left(1-\cos\phi_s\right)e^{-\Gamma_{\rm L}^{(s)}t}+\left(1+\cos\phi_s\right)e^{-\Gamma_{\rm H}^{(s)}t}\mp 2e^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right]$				
10	$ A_0(0) A_S(0) [\frac{1}{2}(e^{-\Gamma_{\rm H}^{(s)}t} - e^{-\Gamma_{\rm L}^{(s)}t})\sin\delta_{\rm S}\sin\phi_{\rm S}]$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T\right)$			
	$\pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$				
$ \left[\phi \Delta \Gamma \delta \delta \delta \\ - \lambda \Gamma \sigma \delta \delta \delta \delta \delta \delta \delta \delta \delta$					

Symmetries in the formulas:

ALLES DE

$B_s \rightarrow J/\psi\phi$ Events Selection

- Extraction of the decay angles from the fully reconstructed topology, Bs proper decay time calculated in transverse plane:
- Important selection of correct primary vertex (by pointing of B_s momentum)

$$t = \frac{L_{xy} \ M_B}{c \ p_{\mathrm{T}_B}}$$

Initial B_s Charge Flavour Tagging

- Find the B_s -charge flavour at the time of creation
- Method is based on the fact that b-quarks are created in $b\overline{b}$ pairs \rightarrow by reconstructing the other opposite side B-hadron, one can determine the flavour of the signal $B_s \rightarrow J/\psi\phi$
- Two methods of determination of the opposite B-hadron charge flavour:

Muon tagger:

- Identify muon from semileptonic B-decay
- Calculated charge of cone around the muon: $Q_{\!\mu}$

$$Q_{\mu} = \frac{\sum_{i}^{N \operatorname{tracks}} q^{i} \cdot (p_{T}^{i})^{\kappa}}{\sum_{i}^{N \operatorname{tracks}} (p_{T}^{i})^{\kappa}}$$

Jet-charge tagger:

- Reconstruct a jet coming from the same primary vertex
- Calculate charge of the jet (made of Innder Detector tracks): Q_{jet}

Initial B_s Charge Flavour Tagging - Results

• The method is calibrated on self-tagging data sample of $B^+ \rightarrow J/\psi K^+$

- Determine probability that signal decay contains \overline{b} as a function of the muon cone or jet charge Q_{μ} or Q_{jet}

Tagger	Efficiency [%]	Dilution [%]	Tagging Power [%]
Segment Tagged muon	1.08 ± 0.02	36.7 ± 0.7	0.15 ± 0.02
Combined muon	3.37 ± 0.04	50.6 ± 0.5	0.86 ± 0.04
Jet charge	27.7 ± 0.1	12.68 ± 0.06	0.45 ± 0.03
Total	32.1 ± 0.1	21.3 ± 0.08	1.45 ± 0.05

Measurement of $\Delta\Gamma_s$ and ϕ_s

- Running unbinned maximum likelihood fit (acounts for event-by-event resolutions):
- $\mathcal{L} \sim \prod_{1}^{N} w_i \cdot \left[f_s \cdot \mathcal{F}_s(m_i, t_i, \Omega_i) + f_s \cdot f_{B^0} \cdot \mathcal{F}_{B^0}(m_i, t_i, \Omega_i) + (1 f_s f_s \cdot f_{B^0}) \cdot \mathcal{F}_{bck}(m_i, t_i, \Omega_i) \right]$
- Non-resonant contribution for $B_s \to J/\psi K^{\scriptscriptstyle +} K^{\scriptscriptstyle -}$ included in the signal
- Dedicated functions to describe background from $B_d \rightarrow J/\psi K^*$ (6.5%) and $B_d \rightarrow J/\psi K\pi$ (4.5%). Enters signal B_s -mass region due to different mass hypothesis on the hadronic tracks.

17.09.2013

Results: Measurement of \Delta\Gamma_s and \phi_s

- Measurement still statistically dominated (2012 analysis in progress)
- Uncertainty due to initial B-charge flavour tagging improved by 40%

$B_s \rightarrow J/\psi \phi$ Results Among Experiments

• ATLAS can provide similar precision in $\Delta\Gamma_s$ measurement as LHCb; ϕ_s precision is connected with lifetime resolution which LHCb has >2x better

Angular analysis of semileptonic rare decay $B_d \rightarrow K^{*0}\mu\mu$ decay (extraction of A_{FB} and F_L)

Angular Analysis of $B_d \rightarrow K^{*0}\mu\mu$ Decay

- $b \to s \mu \mu$ FCNC transitions in SM do not occur at tree level, but only with loops
 - small branching ratio ~ 10-6
 - great sensitivity to eventual non-SM particles in the loops

 Measure the differential decay rate – angular distributions at different q² areas (square of invariant mass of the muon pair)

$B_d \rightarrow K^{*0} \mu \mu$ Observation

- Events are collected with di-muon and single-muon triggers (di-muon triggers are limited in $\mu\mu$ -invariant mass, single-muon trigger with 2nd muon reconstructed offline helps collecting events)
- Cut based analysis; cuts 220 Events / 40 MeV **ATLAS** Preliminary \s = 7 TeV optimized on MC for full 200 $0.04 \text{ GeV}^2 < q^2 < 19.00 \text{ GeV}^2$ Ldt = 4.9 fb $q^2 = M(\mu\mu)^2$ region 180F Data 160 Signal fit Full range of di-muon 140Ē Background fit mass, but excluded 120 Total fit cc-resonances 100 80 60 40 20 5000 5100 5200 5300 5400 5500 5700 5600 $m(K\pi\mu\mu)$ [MeV]
- Observed 446 ± 34 signal events over 1132 ± 43 background (extracted from fit to the mass distributions with per-event gaussian signal and polynomial background)

Angular Analysis of $B_d \rightarrow K^{*0}\mu\mu$

- Reconstructed $B_d \rightarrow K^* \mu \mu$ decay candidate characterized by 3 angles and di-muon invariant mass (q²)
- Due to low number of signal events:
 - datasample divided into just six q² bins (Belle definition; to be comparable with other experiments)
 - in each q² bin simultaneously fitting two 1D angular distributions (integrated over the other two angles):
 - only two angular observables remain:
 - A_{FB} forward-backward asymmetry of the μ⁺ direction w.r.t. B
 - $\mathbf{F}_{\mathbf{L}} \mathbf{K}^*$ longitudinal polarization fraction

$$\frac{1}{\Gamma} \frac{\mathrm{d}^2 \Gamma}{\mathrm{d}q^2 \mathrm{d} \cos \theta_L} = \frac{3}{4} F_L(q^2) \left(1 - \cos^2 \theta_L\right) + \frac{3}{8} \left(1 - F_L(q^2)\right) \left(1 + \cos^2 \theta_L\right) + A_{FB}(q^2) \cos \theta_L$$

$$\frac{1}{\Gamma}\frac{\mathrm{d}^2\Gamma}{\mathrm{d}q^2\mathrm{d}\cos\theta_K} = \frac{3}{2}F_L(q^2)\cos^2\theta_K + \frac{3}{4}\left(1 - F_L(q^2)\right)\left(1 - \cos^2\theta_K\right)$$

Measurement of the $A_{\mbox{\tiny FB}}$ and $F_{\mbox{\tiny L}}$

- Running unbinned maximum likelihood fit (in each q² region) to B-mass and and the two angular distributions:
 - B-mass distribution to separate signal
 - sequential fit approach → firstly B-mass distribution is fitted, then mass-angular fit is run with the B-mass related parameter: fixed

m(Kπμμ) [MeV]

Fits Results

Comparison to Other Experiments

- Can provide competitive precision at high-q² region
- Relative yields in low-q² bins should improve with 2012 data (better trigger for these decays)
- Full angular analysis planned with 2012 data

Measurement of branching ratio of very rare decay $B_s \rightarrow \mu\mu$

$B_s \rightarrow \mu\mu$ Branching Ratio Measurement

- $Bs \rightarrow \mu\mu$: Flavor Changing Neutral Current (FCNC)
 - strongly suppressed in the SM, BR(theo) = $(3.5\pm0.2)\times10^{-9}$
 - can be enhanced by new physics

- First measurement of the BR by LHCb is: $BR(Bs \rightarrow \mu\mu) = (3.2^{+1.5} - 1.2) \times 10^{-9}$ Phys. Rev. Lett. 110, 021801 (2013), LHCb-TALK-2012-306
- Sufficient precise measurement of the BR can allow to claim the new physics
 => combination of ATLAS, CMS and LHCb

Analysis Outline

- Analysis relative to reference channel B+ $\rightarrow J/\psi(\mu\mu)K+$

$$\mathcal{B}(\boldsymbol{B}_{s}^{\boldsymbol{\theta}} \to \boldsymbol{\mu}^{+}\boldsymbol{\mu}^{-}) = \mathcal{B}(\boldsymbol{B}^{\pm} \to \boldsymbol{J}/\boldsymbol{\psi}\boldsymbol{K}^{\pm} \to \boldsymbol{\mu}^{+}\boldsymbol{\mu}^{-}\boldsymbol{K}^{\pm}) \times \frac{f_{u}}{f_{s}} \times \frac{N_{\boldsymbol{\mu}^{+}\boldsymbol{\mu}^{-}}}{N_{\boldsymbol{J}/\boldsymbol{\psi}\boldsymbol{K}^{\pm}}} \times \frac{A_{\boldsymbol{J}/\boldsymbol{\psi}\boldsymbol{K}^{\pm}}}{A_{\boldsymbol{\mu}^{+}\boldsymbol{\mu}^{-}}} \frac{\epsilon_{\boldsymbol{J}/\boldsymbol{\psi}\boldsymbol{K}^{\pm}}}{\epsilon_{\boldsymbol{\mu}^{+}\boldsymbol{\mu}^{-}}},$$

- Analysis of full 2011 dataset (latest update)
- Blind signal region in the whole datasample (although 1/2 was already analyzed in previous paper)
- Use MC for continuum background modeling
- J/ψ polarization correction applied to MC of the reference channel
- Signal extraction via event count in the signal region
- Estimate of expected background use 50% of the sidebands
- Cuts optimization on the other 50%

Background Modeling

 14 discriminating variables explored to distinguish signal from continuum backround

L_{xy}	Scalar product in the transverse plane of $(\Delta \vec{x} \cdot \vec{p}^B) / \vec{p}_T^B $	1
I _{0.7} isolation	Ratio of $ \vec{p}_T^B $ to the sum of $ \vec{p}_T^B $ and the transverse momenta of all tracks with $p_T > 0.5$ GeV within a cone $\Delta R < 0.7$ from the B direction, excluding B decay products	2
$ \alpha_{2D} $	Absolute value of the angle in the transverse plane between $\Delta \vec{x}$ and \vec{p}^B	3
p_L^{min}	Minimum momentum of the two muon candidates along the B direction	4
p_T^B	B transverse momentum	5
ct significance	Proper decay length $ct = L_{xy} \times m_B / p_T^B$ divided by its uncertainty	6
χ^2_z, χ^2_{xy}	Significance of the separation between production (PV) and decay vertex (SV) $\Delta \vec{x}^T \cdot (\sigma_{\Delta \vec{x}}^2)^{-1} \cdot \Delta \vec{x}$, in <i>z</i> and (<i>x</i> , <i>y</i>), respectively	7, 13
$ D_{xy} ^{min}$, $ D_z ^{min}$	Absolute values of the minimum distance of closest approach in the xy plane or along z of tracks in the event to the B vertex	8, 11
$\Delta \boldsymbol{R}$	Angle $\sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$ between $\Delta \vec{x}$ and \vec{p}^B	9
$ d_0 ^{max}, d_0 ^{min}$	Absolute values of the maximum and minimum impact parameter in the transverse plane of the B decay products relative to the primary vertex	10, 12

• Peaking backrounds (fake rates from p and K) estimated from MC + latest branching ratios \rightarrow 0.3 ev contribution in signal region

- All distribution used in the cuts are confronted between data and MC and eventually reweighted
 - for signal the reference channel is used for comparisons
 - for continuum background the data sidebands and inclusive MC are compared
- Correction for J/ψ polariztion in the reference channel
- Correction for cut of at low-p_T events during MC production
- Reweight $B-p_T$ and pseudorapidity distribution to match data
 - extract weights from half of B+ \rightarrow J/ $\psi K+$ and Bs \rightarrow J/ $\psi \phi$ data to be applied to MC
 - to be used in the selection training (BDT) and calculation and efficiencies for signal and the reference channel

Channel

 B^+

 B_{s}^{θ}

- Optimization runs at half of sidebands data and reweighted signal MC
- Optimizing selection and signal region width
- Optimization based on maximization of punzi estimator: (signal MC efficiency, background from sidebands)
- Same final selection applied to the reference channel:
- Acceptance and efficiency:
 - Ratio between reference and signal channel
 - Extracted from the rewerighted MC samples

 $A \times \epsilon$

 $1.317 \pm 0.008\%$ (stat)

 $4.929 \pm 0.084\%$ (stat)

29

 $R_{A\epsilon}$

Opening the Blinded Region

- Extrapolation of the number of background events into the signal region yields 6.75 events
- After unblinding 6 events observed

ATUS A

Extracted Upper Limit on BR($B_s \rightarrow \mu\mu$)

Measurement of parity violating asymmetry parameter α_b and the helicity amplitudes in decay $\Lambda_b \rightarrow J/\psi\Lambda$

$\Lambda_{\rm b} \rightarrow \Lambda J/\psi$ - Motivation

- The Λ^0 and J/ψ decay are well studied.
- Little is known about Λ_b^0 decay
- PDF of the decay angle

$$w(\cos\theta) = \frac{1}{2}(1 + \alpha_b P \cos\theta)$$

• Four possible Helicity combinations

$$|a_{+}|^{2} + |a_{-}|^{2} + |b_{+}|^{2} + |b_{-}|^{2} = 1$$

$$\alpha_{b} = |a_{+}|^{2} - |a_{-}|^{2} + |b_{+}|^{2} - |b_{-}|^{2}$$

• The full decay angular PDF

$$w(\Omega, \vec{A}, P) = \frac{1}{(4\pi)^3} \sum_{i=0}^{19} f_{1i}(\vec{A}) f_{2i}(P, \alpha_{\Lambda}) F_i(\Omega)$$

Amplitude	$\lambda_{J/\psi}$	λ_{Λ}			
a ₊	0	1/2			
a_	0	-1/2			
b_+	-1	-1/2			
b	1	1/2			
Λ helicity frame					
A helicity frame x_1 y_1 x_1 ϕ_1 y_1 A_b rest frame π ψ h π h					
$_i(\Omega)$	_ J/ψ	helicity fran	ne		

Full Decay Angular PDF

• Can be reduced constraining normalization of the helicity amplitudes, arbitrary overall phase and considering ATLAS detector symmetry

i	f_{1i}	f_{2i}	F_i		
0	$a_{+}a_{+}^{*}+a_{-}a_{-}^{*}+b_{+}b_{+}^{*}+b_{-}b_{-}^{*}$	1	1		
1	$a_{+}a_{+}^{*}-a_{-}a_{-}^{*}+b_{+}b_{+}^{*}-b_{-}b_{-}^{*}$	Р	$\cos heta$		
2	$a_+a_+^st - aa^st - b_+b_+^st + bb^st$	α_{Λ}	$\cos heta_1$		
3	$a_{+}a_{+}^{*}+a_{-}a_{-}^{*}-b_{+}b_{+}^{*}-b_{-}b_{-}^{*}b_{-}^{*}$	$P \alpha_{\Lambda}$	$\cos\theta\cos\theta_1$		
4	$-a_{+}a_{+}^{*}-a_{-}a_{-}^{*}+rac{1}{2}b_{+}b_{+}^{*}+rac{1}{2}b_{-}b_{-}^{*}$	1	$\frac{1}{2}(3\cos^2\theta_2 - 1)$		
5	$-a_{+}a_{+}^{*}+a_{-}a_{-}^{*}+rac{1}{2}b_{+}b_{+}^{*}-rac{1}{2}b_{-}b_{-}^{*}$	Р	$\frac{1}{2} (3\cos^2 \theta_2 - 1) \cos \theta$		
6	$-a_{+}a_{+}^{*}+a_{-}a_{-}^{*}-rac{1}{2}b_{+}b_{+}^{*}+rac{1}{2}b_{-}b_{-}^{*}$	α_{A}	$\frac{1}{2} (3\cos^2 \theta_2 - 1) \cos \theta_1$		
7	$-a_{+}a_{+}^{*}-a_{-}a_{-}^{*}-rac{1}{2}b_{+}b_{+}^{*}-rac{1}{2}b_{-}b_{-}^{*}$	$P \alpha_{\Lambda}$	$rac{1}{2}\left(3\cos^2 heta_2-1 ight)\cos heta\cos heta_1$		
8	$-3Re(a_+a^*)$	$P \alpha_{\Lambda}$	$\sin\theta\sin\theta_1\sin^2\theta_2\cos\varphi_1$		
9	$3Im(a_+a^*)$	$P \alpha_{\Lambda}$	$\sin heta\sin heta_1\sin^2 heta_2\sinarphi_1$		
10	$-rac{3}{2} {\it Re}(bb_+^*)$	$P \alpha_{\Lambda}$	$\sin heta \sin heta_1 \sin^2 heta_2 \cos (arphi_1 + 2 arphi_2)$		
11	$\frac{3}{2}Im(b_{-}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\sin heta \sin heta_1 \sin^2 heta_2 \sin (arphi_1 + 2 arphi_2)$		$- _{2} ^{2} _{2} _{2} ^{2} _{k} ^{2} _{k}$
12	$-\frac{3}{\sqrt{2}}Re(b_a^*+a_b^*)$	$P \alpha_{\Lambda}$	$\sin \theta \cos \theta_1 \sin \theta_2 \cos \theta_2 \cos \varphi_2$	$\alpha_{\rm t}$	$b_{0} = a_{+} - a_{-} + b_{+} - a_{-} $
13	$\frac{3}{\sqrt{2}}Im(b_a_+^* + a_b_+^*)$	$P \alpha_{\Lambda}$	$\sin \theta \cos \theta_1 \sin \theta_2 \cos \theta_2 \sin \varphi_2$		a.
14	$-\frac{\sqrt{2}}{3}Re(b a^* + a b^*)$	$P\alpha$	$\cos\theta \sin\theta_1 \sin\theta_2 \cos\theta_2 \cos(\varphi_1 + \varphi_2)$	k	$a = \frac{ a_+ }{ a_+ }$
15	$\frac{3}{\sqrt{2}}Im(b_{-}a_{-}^{*}+a_{+}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\cos\theta \sin\theta_1 \sin\theta_2 \cos\theta_2 \sin(\varphi_1 + \varphi_2)$		$\sqrt{ a_+ ^2 + b_+ ^2}$
16	$\frac{\sqrt{2}}{\sqrt{2}}$ Re(a b [*] ₁ - b a [*] ₁)	P	$\frac{1}{\sin\theta} \sin \theta_2 \cos \theta_2 \cos \varphi_2$		
17	$-\frac{3}{2}$ $lm(a, b^* - b, a^*)$	Р	$\sin \theta \sin \theta_2 \cos \theta_2 \sin \varphi_2$	k.	
18	$\frac{3}{\sqrt{2}}Re(b \ a^* - a_{\perp}b_{\perp}^*)$	α_{Λ}	$\sin \theta_1 \sin \theta_2 \cos \theta_2 \cos(\varphi_1 + \varphi_2)$		$1 - \sqrt{ a ^2 + b ^2}$
19	$-\frac{3}{2}$ $Im(b = a^* - a + b^*)$	α.	$\sin \theta_1 \sin \theta_2 \cos \theta_2 \sin(\varphi_1 + \varphi_2)$		\mathbf{V}
	$\sqrt{2}$ m(2_2_ 2_ 2_+)	α۸	$\frac{1}{1} \sin (\varphi_2 \cos \varphi_2 \sin (\varphi_1 + \varphi_2))$	Δ_+	$\rho_{+} = \rho_{+} - \omega_{+}$
				Δ_{-}	$\mu_{-}= ho_{-}-\omega_{-}$
					_
	$i f_{1i}$			f _{2i}	F _i
	0 1			1	1
	$2 (k_0^2 + k_1^2 - 1) + \alpha$	$k_{\rm b}(k_0^2 -$	(k_1^2)	α_{Λ}	$\cos \theta_1$
	4 $\frac{1}{4}[(3k_1^2 - 3k_0^2 - 1)]$	$) + 3\alpha_{\rm h}$	$\left[1 - k_1^2 - k_0^2\right]$	1	$\frac{1}{2}(3\cos^2\theta_2-1)$
	$6 -\frac{1}{4}\left[\left(k_0^2 + k_1^2 - 1\right)\right]$	$+ \alpha_{\rm b}$	$3 + k_0^2 - k_1^2)$]	α_{Λ}	$\frac{1}{2}(3\cos^2\theta_2 - 1)\cos\theta_1$
	$\frac{\frac{3}{18} - \frac{3}{\sqrt{2}} \left[\frac{1 - \alpha_{\rm b}}{2} \sqrt{k_1^2 (1 - \alpha_{\rm b})^2} \right]}{\frac{3}{\sqrt{2}} \left[\frac{1 - \alpha_{\rm b}}{2} \sqrt{k_1^2 (1 - \alpha_{\rm b})^2} + \frac{3}{\sqrt{2}} \left[\frac{1 - \alpha_{\rm b}}{2} \sqrt{k_1^2 (1 - \alpha_{\rm b})^2} + \frac{3}{\sqrt{2}} + \frac{3}{\sqrt{2}} \right]}$	$-k_1^2$	$\cos(-\Delta_{-}) - \frac{1+\alpha_{\rm b}}{2} \sqrt{k_0^2(1-k_0^2)} \cos(\Delta_{+})]$	α_{Λ}	$\sin \theta_1 \sin \theta_2 \cos \theta_2 \cos(\varphi_1 +$
	$\frac{\sqrt{2}}{-\frac{3}{2}} \left[\frac{1-\alpha_{\rm b}}{2}\sqrt{k^2}\right]$	$\frac{1}{(1-k^2)}$	$\overline{1}\sin(-\Delta_{\rm c}) = \frac{1+\alpha_{\rm b}}{1+\alpha_{\rm b}}\sqrt{k^2(1-k^2)}\sin(\Delta_{\rm c})$	α.	$\sin \theta_1 \sin \theta_2 \cos \theta_2 \sin(\omega_1 + \omega_2)$

Selected Events

- Combination of di-muon and single muon triggers is used (to collect as large as possible signal yield)
- $\Lambda_b \rightarrow J/\psi(\mu\mu) \Lambda(p\pi)$ decay is fully reconstructed with appropriate vertexing constraints
- Extraction of signal events considers among combinatorial background also peaking background from $B_d \rightarrow J/\psi(\mu\mu) \ K^0_s(\pi\pi)$ decays
- Cross-checked that dataset of $\Lambda_{\rm b}$ and $\overline{\Lambda}_{\rm b}$ are consistent

Fit and Results

- Least square fit:
 - calculate average <Fi> moments (consider detector acceptance and fraction of $B_d \rightarrow J/\psi(\mu\mu) \ K^0_s(\pi\pi)$ bacground, perform sidebands substraction for the combinatorial backround)

$$\chi^{2} = \sum_{i=1}^{5} \sum_{i=1}^{5} (\langle F_{i} \rangle^{\text{expected}} - \langle F_{i} \rangle) V_{ij}^{-1} (\langle F_{j} \rangle^{\text{expected}} - \langle F_{j} \rangle)$$

• Fit results:

$$\begin{aligned} \alpha_{\rm b} &= 0.28 \pm 0.16 \pm 0.06 \\ |a_{+}| &= 0.17^{+0.12}_{-0.17} \pm 0.06 \\ |a_{-}| &= 0.59^{+0.06}_{-0.07} \pm 0.04 \\ |b_{+}| &= 0.79^{+0.04}_{-0.05} \pm 0.02 \\ |b_{-}| &= 0.08^{+0.13}_{-0.08} \pm 0.05. \end{aligned}$$

- consistent at ~1σ with LHCb measurement
- deviates by 2.5σ resp.
 2.9σ from theory predictions by pQCD and HQET
- 2012 data analysis ongoing

Observations of rare/new B-hadrons (B_c, χ_b)

First Observation of $\chi_b(3P)$ State

nvariant mass [GeV]

- Understanding underlying structure in recently observed quarkonium-like states (can be 4-quark, cc-gluon etc. states)
- New peak observation interpreted as: $\chi_b(3P) \rightarrow \Upsilon(1S) + \gamma, \chi_b(3P) \rightarrow \Upsilon(2S) + \gamma$
- γ reconstructed from both conversions and EM calorimeter (higher $p_T => \Upsilon(2S) + \gamma$ only)

Observed bottomonium radiative decays in ATLAS. L = 4.4 fb¹

 $\chi_{b}(3P)$ also expected below BB threshold, predicted CoG mass 10,525 GeV

B_c⁺ **Observation**

- Two different heavy flavours \rightarrow study heavy quark production dynamics
- B_c Lifetime measurement \rightarrow test B_c decay model (**b** and **c** quark decays compete)
- First observed by CDF in 1998, lifetime measured by CDF (2006) and DØ (2009) in semileptonic decay channel including neutrino; LHCb measured relative x-section to B⁺
- ATLAS observation in $B_{c^{+}} \rightarrow J/\psi \pi^{+}$ decay channel
- Di-muon J/ψ decay (trigger)
- Main selection:
 - B_c⁺ vertex quality,
 - π track d₀ significance

Production cross-section measurements

B-hadron Production in D*µX

ATLAS

 $\sqrt{s} = 7 \text{ TeV}$

o.

Entries

1000

500

Data 2010

— fit

opposite sign D*µ

fit: $N(D^*\mu) = 4516 \pm 100$

----- same sign D*µ

L dt = 3.3 pb

- Aim: differential x-section for open beauty production in pp collisions
- Decay mode: $B \to D^{\star\pm}\mu X$; $D^{\star\pm} \to D^0\pi^{\pm}$; $D^0 \to \pi K \stackrel{\text{dec}}{\cong} 2000 \stackrel{\text{L}}{\longrightarrow}$
 - the muon act as a trigger
 - the decay is fully reconstructable in ATLAS detector
- Unfolding procedure to obtain differential x-section as a function of B-hadron η/p_T ; and detector acceptance to define the fiducial volume in the B-hadron η/p_T space

Associated Production of Prompt J/ ψ and W[±]

- Probes quarkonium production mechanis; Sensitive to multiple parton interactions
- Final state: $W(\rightarrow \mu \nu) + J/\psi (\rightarrow \mu \mu)$
- Unbinned maximum likelihood fit to get prompt J/ ψ yield; W selection pratically backround-free; \rightarrow ~29 candidates
- Assumption for probability of W and J/ψ originate from different parton interaction in the same pp collision (DPS):

$$d\sigma_{W+J/\psi} = rac{d\sigma_W \otimes d\sigma_{J/\psi}}{\sigma_{E\!f\!f}}$$

- Ratio to $W+J/\psi$ to W production order of magnitude above theory prediction

Other Production X-Section Measurements

- B⁺ production x-section in B⁺ \rightarrow J/ ψ K⁺ channel
 - large theory uncertainties, measurement in good agreement within the uncernt.

Quarkonia production:

- test mechanism of production at low-energy scale for heavy quarks in bound state
- Inclusive / prompt and non-promp J/ ψ production
 - range: $p_T(J/\psi)$ (1-70) GeV, |y| < 2.4
- $\psi(2S) \rightarrow J/\psi(\mu\mu)\pi\pi$ production
 - range: $p_T(\psi)$ (10-100) GeV, |y| < 2.0
- Upsilon fidutial x-section measurement
 - range: $p_T(\Upsilon) < 70 \text{ GeV}, |y| < 2.25$
 - observed saturation of the production of higher Υ states relative to $\Upsilon(1S)$ at ~ p_T = (30-40) GeV
- $\chi_{c1,2} \rightarrow J/\psi(\mu\mu)\gamma$ production; branching fraction of $B^+ \rightarrow \chi_{c1,2}K^+$
 - range: $p_T(J/\psi)$ (10-30) GeV, |y| < 0.75

- ATLAS can do B-physics measurements in some areas competitive with (or at least providing cross-checks to) dedicated experiments
 - rare decays $B \to \mu \mu, \, b \to s \mu \mu,$
 - CPV in $B_s \rightarrow J/\psi \phi$, Λ_b polarization
 - rare/excited B-hadrons (decays) observations/searches
- Cross-section measurements at complement other experiments in measuring b-production at >7 TeV in different p_T and rapidity regions
- Currently mostly 2011 dataset analyzed, more to come soon with 2012 data (~4x larger data sample)
- ATLAS B-physics plans to continue also in next LHC phases and related detector updates; up to now no studies shown limits from larger pile-up

ATLAS B-Physics Results

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BPhysPublicResults

Publications

Publications appearing in or submitted to peer-reviewed journals are listed below.

Short Title	Int L	Journal	Preprint	Plots
Differential cross-sections of inclusive, prompt and non-prompt J/ψ production	2.3 pb ⁻¹	Nucl. Phys. B 850 (2011) 387-344	arXiv:1104.3038	Link
Υ(1S) Fiducial Production Cross-Section	1.1 pb ⁻¹	Phys. Lett. B703 (2011) 428-446	arXiv:1106.5325	Link
Observation of a new χ_b state in radiative transitions to Y(1S) and Y(2S)	4.4 fb ⁻¹	Phys. Rev. Lett. 108 (2012) 152001	arXiv:1112.5154	Link
Search for the decay ${B^o}_s \to \mu \mu$	2.4 fb ⁻¹	Phys. Lett. B713 (2012) 180-196	arXiv:1204.0735	Link
b-hadron production cross-section from D*µX final states	3.3 pb ⁻¹	Nucl. Phys. B864 (2012) 341-381	arXiv:1206.3122	Link
Measurement of the Λ_b lifetime and mass	4.9 fb ⁻¹	Phys. Rev. D 87 (2013) 032002	arXiv:1207.2284	Link
ϕ_s and $\Delta\Gamma_s$ from time dependent angular analysis of ${\sf B^o}_s \to J/\psi \; \varphi$	4.9 fb ⁻¹	JHEP 12 (2012) 072	arXiv:1208.0572	Link
Inclusive $\Upsilon(nS)$ differential cross sections and ratios	1.8 fb ⁻¹	Phys. Rev. D 87 (2013) 052004	arXiv:1211.7255	Link
NEW Production cross section of B ⁺ at √s = 7TeV	2.4 fb ⁻¹	To appear on JHEP	arXiv:1307.0126	Link
Analyses performed within other ATLAS Physics Groups:				
Centrality dependence of J/ ψ production in heavy ions collisions	6.7 µb ⁻¹	Phys. Lett. B 697 (2011) 294-312	arXiv:1012.5419	Link
Inclusive production of electrons and muons (b/c cross section)	35 pb ⁻¹	Phys. Lett. B 707 (2012) 438-458	arXiv:1109.0525	Link
D* ^{+/-} production in jets	0.3 pb ⁻¹	Phys. Rev. D 85, 052005 (2012)	arXiv:1112.4432	Link

ATLAS B-Physics Results

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/BPhysPublicResults CONF notes

Notes containing preliminary or unpublished results based on data, the contents of which may be used in conference talks, are listed below.

Short Title	Int L	Ref./link to ATLAS public pages
D(*) mesons reconstruction in pp collisions at √s = 7TeV	0.37 nb ⁻¹	ATLAS-CONF-2010-034
Observation of the J/ $\psi \rightarrow \mu\mu$ resonance	6.4 nb ⁻¹	ATLAS-CONF-2010-045
(Preliminary) Measurement of the J/ $\psi ightarrow \mu\mu$ differential cross section and fraction from B decays	19.5 nb ⁻¹	ATLAS-CONF-2010-062
Observation of the B± meson in the decay B± \rightarrow J/ ψ (µ+µ-) K±	3.4 pb ⁻¹	ATLAS-CONF-2010-098
Measurement of D* and D+ meson production cross sections at √s = 7TeV	1.1 nb ⁻¹	ATLAS-CONF-2011-017
Observation of the B° $_d$ and B° $_s$ mesons in the decays B° $_d {\rightarrow}$ J/ ψ K*° and B° $_s {\rightarrow}$ J/ ψ φ	40 pb ⁻¹	ATLAS-CONF-2011-050
Measurement of the B° _d and B° _s lifetimes in the decays B° _d $ ightarrow$ J/ ψ K*° and B° _s $ ightarrow$ J/ ψ φ	40 pb ⁻¹	ATLAS-CONF-2011-092
Observation of the decay B ^o d→J/ψ K _S	40 pb ⁻¹	ATLAS-CONF-2011-105
Observation of χ_c states through J/ ψ γ transitions	40 pb ⁻¹	ATLAS-CONF-2011-136
Observation of the decay $\Lambda_b \to J/\psi(\mu\mu) \Lambda$	1.2 fb ⁻¹	ATLAS-CONF-2011-124
Measurement of the average B lifetime in inclusive $B \to J/\psi \: X \to \mu + \mu - \: X$ decays	35 pb ⁻¹	ATLAS-CONF-2011-145
Observation of the B^\pm_c meson in the decay $B^\pm_{c} \to J/\psi(\mu^+\mu^-) \pi^\pm$	4.3 fb ⁻¹	ATLAS-CONF-2012-028
Combined LHC limit to the decay ${\sf B^o}_s \to \mu \mu$ (ATLAS-CMS-LHCb note)	2.4-5-1.0 fb ⁻¹	ATLAS-CONF-2012-061
Angular analysis of $B^0_{\ d} \to K^{\star 0} \mu^+ \mu^-$	4.9 fb ⁻¹	ATLAS-CONF-2013-038
ϕ_s and $\Delta\Gamma_s$ from flavor-tagged time-dependent angular analysis of ${\sf B^o}_s \to J/\psi~\varphi$	4.9 fb ⁻¹	ATLAS-CONF-2013-039
NEW Associated production of prompt J/ ψ mesons and W boson in at \sqrt{s} = 7TeV	4.6 fb ⁻¹	ATLAS-CONF-2013-042
NEW Measurement of the parity violating asymmetry parameter α_b and the helicity amplitudes for the decay $\Lambda_b^0 \rightarrow J/\psi \Lambda^0$	4.6 fb ⁻¹	ATLAS-CONF-2013-071
NEW Limit on $B^{o}_{s} \rightarrow \mu\mu$ branching fraction based on 4.9 fb ⁻¹ of integrated luminosity	4.9 fb ⁻¹	ATLAS-CONF-2013-076
NEW Cross-section measurement of $\psi(2S) \rightarrow J/\psi (\rightarrow \mu^+\mu^-) \pi^+\pi^-$ at $\sqrt{s} = 7 \text{TeV}$	2.1 fb ⁻¹	ATLAS-CONF-2013-094
NEW Measurement of χ_{c1} and χ_{c2} production with $\sqrt{s} = 7 \text{TeV} pp$ collisions	4.5 fb ⁻¹	ATLAS-CONF-2013-095

Early Measurements: B-Hadrons Mass & Lifetime

All masses and lifetimes consistent with PDG ⇒ well prepared for CPV measurement